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The Problem
Given a set of elements, put them in non-decreasing order.

Motivation
Very commonly used as a subroutine in other algorithms (such 

as graph-, geometric-, and scientific algorithms).
A good sorting implementation is thus important to achieving 

good implementations of many other algorithms.
Performance of sorting algorithms seem greatly influenced by 

many aspects of modern computers, such as the memory 
hierarchy and pipelined execution.

Sorting Algorithms



Sorting Algorithms
– Binary mergesort

Ex. binary mergesort:
1. Split elements into two 

halves.
2. Sort each half 

recursively.
3. Make space for sorted 

elements and merge the 
sorted halves
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Cache-oblivious
– Motivation

The presence of a 
memory hierarchy has 
become a fact of life.
Accessing non-local 
storage may take a very 
long time.
Good locality is important 
to achieving high 
performance.
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Cache-oblivious Algorithms
– Models

Random Access Memory
All basic operations take 
constant time.
Complexity is the number of 
operations executed (instruction 
count), i.e. the total running 
time of the algorithm.

External Memory
Computation is done in main 
memory.
Data is brought to and from 
main memory in I/Os, explicitly 
controlled by the algorithm
Complexity is the number of 
I/Os done by the algorithm.

Cache-oblivious
Algorithms designed for the RAM model; algorithm does not control the I/Os.
Algorithms analyzed for the EM model.
Complexity is both the instruction count and the number of I/Os (memory 
transfers) incurred by the algorithm.



Cache-oblivious Algorithms
– Sorting

Random Access Memory
Complexity of binary mergesort: 
O(NlogN).
Complexity of any (comparison-
based) sorting algorithm: 
Ω(NlogN).

External Memory
Complexity of binary mergesort: 
O(N/BlogN/M).
Complexity of any sorting 
algorithm: Ω(N/BlogM/BN/M).

Binary mergesort optimal in External Memory only if M = 2B.
What if M > 2B? Multiway mergesort incurs O(N/BlogM/BN/M) I/Os, given the 
right M and B.
Multiway mergesort is suboptimal with the wrong M and B.

– M and B cannot in general be determined.
– Running the algorithm on a machine different from the one to which it was designed.

Funnelsort and LOWSCOSA incurs O(N/BlogM/BN/M) memory transfers, 
without knowing M and B.



Cache-oblivious Algorithms
– Assumptions

To analyze the cache complexity of an 
algorithm that is oblivious to caches, some 
issues need to be settled: 
– How is an I/O initiated?
– Where in memory should the block be placed?



Cache-oblivious Algorithms
– Ideal Cache

We analyze in the ideal cache model:
– Automatic replacement
– Full associativity
– Optimal replacement strategy: Underlying 

replacement policy is the optimal offline algorithm.
– Two levels of memory
– Tall cache: M/B ≥ cB2/(d-1), for some c > 0 and   
d > 1.

Unrealistic assumptions?



Cache-oblivious Algorithms
– Sorting cont’d.

Funnelsort and LOWSCOSA achieve 
optimality by merging with funnels.
A funnel is a tree with buffers on the 
edges. These buffers are inputs and 
outputs of the nodes.
Buffer capacity is determined by 
following the van Emde Boas recursion; 
the capacity of the output buffer of a   
tree with k inputs is αkd.

α⋅2d
α⋅4d



Merging
– Two-phase funnel with refilling

Refill()

Elements are merged from the input of a node 
to the output in a fill() operation.
In an explicit warm-up phase, fill() is called 
on all nodes bottom-up. Elements are output 
from the funnel by then calling fill() on the 
root.
When fill() merges at leaf nodes, a custom 
Refill() function is invoked to signal that 
elements have been read in from the input of 
the funnel, so that the space they occupy may 
be reused.
fill() merges until either the output is full or 
one of the inputs is empty. In the latter case, it 
calls recursively the fill the input. In the first, it 
is done.



LOWSCOSA

World’s first low-order 
working space cache-
oblivious sorting algorithm.
1. Partition small elements to 

the back.
2. Sort recursively (or by using 

funnelsort).
3. Attach refiller that moves 

elements from the front of 
the array to newly freed 
space in the input streams.

4. Sort right half recursively.
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Algorithm Engineering

It’s all about speed!

...and
– Correctness
– Robustness
– Flexibility
– Portability



Algorithm Engineering
– What is speed?

Theoretician: Asymptotic worst-case running 
time.
Algorithm engineer:
– Good asymptotic performance
– Low proportionality constants
– Fast running times on real-world data
– Robust performance across variety of data
– Robust performance across variety of platforms



Algorithm Engineering
– How to gain speed?

Optimize low-level data structures.
Optimize low-level algorithmic details.
Optimize low-level coding.
Optimize memory consumption.
Maximize locality of reference.

A good understanding of the algorithms is 
extremely important.



Algorithm Engineering
– Pencil & paper vs. implementation

Moret defines algorithm engineering as 
”Transforming ”paper-and-pencil” algorithms 
into efficient and useful implementations.”

Filling in the details.



Experimental Methodology



Methodology
– Algorithmic details

How should the funnel be laid out in memory?
How do we locate nodes and buffers?
How should we implement merge functionality?
What is a good value for z and how do we merge multiple 
streams efficiently?
How do we reduce the overhead of the sorting algorithm?
How do we sort at the base of the recursion?
What are good values for α and d?
How do we handle the output of the funnel?
How do we best manage memory during sorting?
...



Methodology
– Algorithmic details cont’d.

Inspired by knowledge of the memory hierarchy and 
modern processor technology, we develop several 
solutions to each of these questions.
All solutions are implemented and benchmarked to 
locate the best performing combination of 
approaches.
It turns out, the simpler the faster (except perhaps 
memory management).
Increasing α and d is a cheap way of decreasing the 
overhead of the funnel.



Methodology
– What answers do we seek?

Are the assumptions of the ideal cache model too 
unrealistic, i.e. are the algorithms only
optimal/competitive under ideal conditions?
Will the better utilization of caches improve running 
time of our sorting algorithms?
Will the better utilization of virtual memory improve 
running time of our sorting algorithms?
Can our algorithms compete with classic instruction 
count optimized RAM-based sorting algorithms and 
memory-tuned cache-aware EM-based sorting 
algorithms?



Methodology
– Platforms

To avoid ”accidental optimization,” we benchmark on several 
different architectures:

– MIPS R10k: Classic RISC; short pipeline, large L2 cache, low 
clock rate, software TLB miss handling. 64-bit.

– Pentium 3: Classic CISC; twice as deep a pipeline as MIPS, good 
branch prediction, many execution units.

– Pentium 4: Extremely deep pipeline, compensated by very good 
branch prediction. Very high clock rates.

Several different operating systems supported: IRIX (64-bit), 
Linux (32-bit), Windows (32-bit). Benchmarks run on IRIX and 
Linux.
Tested with several different compilers: GCC, MSVC, 
MIPSPRO, ICC.



Methodology
– Data types

To demonstrate robustness, we benchmark 
several different data types:
– Key/pointer pairs: class { long key; void *p; }
– Simple keys: long.
– Records: class { char record[100]; }

Inspired by the official sorting benchmark, Datamation 
Benchmark.
Order determined by strncmp().



Methodology
– Input data

To demonstrate robustness, we benchmark several 
different input distributions:

– Uniformly distributed.
– Almost sorted.
– Few distinct elements.
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Methodology
– What to measure

Primarily wall clock time.
CPU time is no good, since it does not take 
into account the time spent waiting for page 
faults to be serviced.
L2 cache misses.
TLB misses.
Page faults.



Methodology
– Validity

For time considerations, we run benchmarks 
only once.
Benchmarks are run on such massive 
datasets that they each take several minuets, 
even several hours.
Periodic external disturbances affect all 
algorithms, are always present, and cannot 
be eliminated by e.g. averaging.



Methodology
– Competitors

To answer the question of whether our cache-
oblivious algorithms can compete with RAM-based 
and memory-tuned cache-aware sorting algorithms, 
we compare them with

– Introsort, developed by SGI as part of STL.
– Multiway mergesort, a part of TPIE, tuned for disk.
– Multi-mergesort, developed by Kubricht et al., tuned for L2 

cache.
– Tiled mergesort, developed by Kubricht et al., tuned for L2 

cache.



Methodology
– The problem

A file stored on a local disk in a native file system 
contains a number of contiguous elements.
The problem is solved when there exist a (possibly 
different) file with the same elements stored 
contiguously in non-decreasing order.
No part of the (original) file is in memory when 
sorting begins.

Motivation: We don’t want to favor any particular initial 
approach; we believe that real-life applications of 
sorting doesn’t.

Inspiration: Datamation Benchmark.



Results



Results
– L2 cache misses

MIPS 10000, 1024/128
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Results
– TLB misses

MIPS 10000, 1024/128
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Results
– Page faults

Pentium 3, 256/256
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Pentium 3, 256/256
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Results
– Wall clock time, Pentium 3



Pentium 4, 512/512
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Results
– Wall clock time, Pentium 4



MIPS 10000, 1024/128
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Conclusion



Conclusion

Very high performing generic sorting 
algorithm.
Unique to our algorithms, performance 
remains robust
– across wide range of input sizes.
– on several different data types.
– on several different input distributions.
– across several different processor and operating 

system architectures.
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