
Master’s thesis by
Kristoffer Vinther

The Problem
Given a set of elements, put them in non-decreasing order.

Motivation
Very commonly used as a subroutine in other algorithms (such

as graph-, geometric-, and scientific algorithms).
A good sorting implementation is thus important to achieving

good implementations of many other algorithms.
Performance of sorting algorithms seem greatly influenced by

many aspects of modern computers, such as the memory
hierarchy and pipelined execution.

Sorting Algorithms

Sorting Algorithms
– Binary mergesort

Ex. binary mergesort:
1. Split elements into two

halves.
2. Sort each half

recursively.
3. Make space for sorted

elements and merge the
sorted halves

Master’s thesis by
Kristoffer Vinther

Cache-oblivious
– Motivation

The presence of a
memory hierarchy has
become a fact of life.
Accessing non-local
storage may take a very
long time.
Good locality is important
to achieving high
performance.

10 ms

500+ ns

150 ns

3 ns

0.5 ns

0.5 ns

Latency

107Disk

200-2000TLB

80-200DRAM

2-7L2 cache

1-2L1 cache

1Register

Relative
to CPU

Cache-oblivious Algorithms
– Models

Random Access Memory
All basic operations take
constant time.
Complexity is the number of
operations executed (instruction
count), i.e. the total running
time of the algorithm.

External Memory
Computation is done in main
memory.
Data is brought to and from
main memory in I/Os, explicitly
controlled by the algorithm
Complexity is the number of
I/Os done by the algorithm.

Cache-oblivious
Algorithms designed for the RAM model; algorithm does not control the I/Os.
Algorithms analyzed for the EM model.
Complexity is both the instruction count and the number of I/Os (memory
transfers) incurred by the algorithm.

Cache-oblivious Algorithms
– Sorting

Random Access Memory
Complexity of binary mergesort:
O(NlogN).
Complexity of any (comparison-
based) sorting algorithm:
Ω(NlogN).

External Memory
Complexity of binary mergesort:
O(N/BlogN/M).
Complexity of any sorting
algorithm: Ω(N/BlogM/BN/M).

Binary mergesort optimal in External Memory only if M = 2B.
What if M > 2B? Multiway mergesort incurs O(N/BlogM/BN/M) I/Os, given the
right M and B.
Multiway mergesort is suboptimal with the wrong M and B.

– M and B cannot in general be determined.
– Running the algorithm on a machine different from the one to which it was designed.

Funnelsort and LOWSCOSA incurs O(N/BlogM/BN/M) memory transfers,
without knowing M and B.

Cache-oblivious Algorithms
– Assumptions

To analyze the cache complexity of an
algorithm that is oblivious to caches, some
issues need to be settled:
– How is an I/O initiated?
– Where in memory should the block be placed?

Cache-oblivious Algorithms
– Ideal Cache

We analyze in the ideal cache model:
– Automatic replacement
– Full associativity
– Optimal replacement strategy: Underlying

replacement policy is the optimal offline algorithm.
– Two levels of memory
– Tall cache: M/B ≥ cB2/(d-1), for some c > 0 and
d > 1.

Unrealistic assumptions?

Cache-oblivious Algorithms
– Sorting cont’d.

Funnelsort and LOWSCOSA achieve
optimality by merging with funnels.
A funnel is a tree with buffers on the
edges. These buffers are inputs and
outputs of the nodes.
Buffer capacity is determined by
following the van Emde Boas recursion;
the capacity of the output buffer of a
tree with k inputs is αkd.

α⋅2d
α⋅4d

Merging
– Two-phase funnel with refilling

Refill()

Elements are merged from the input of a node
to the output in a fill() operation.
In an explicit warm-up phase, fill() is called
on all nodes bottom-up. Elements are output
from the funnel by then calling fill() on the
root.
When fill() merges at leaf nodes, a custom
Refill() function is invoked to signal that
elements have been read in from the input of
the funnel, so that the space they occupy may
be reused.
fill() merges until either the output is full or
one of the inputs is empty. In the latter case, it
calls recursively the fill the input. In the first, it
is done.

LOWSCOSA

World’s first low-order
working space cache-
oblivious sorting algorithm.
1. Partition small elements to

the back.
2. Sort recursively (or by using

funnelsort).
3. Attach refiller that moves

elements from the front of
the array to newly freed
space in the input streams.

4. Sort right half recursively.

Master’s thesis by
Kristoffer Vinther

Algorithm Engineering

It’s all about speed!

...and
– Correctness
– Robustness
– Flexibility
– Portability

Algorithm Engineering
– What is speed?

Theoretician: Asymptotic worst-case running
time.
Algorithm engineer:
– Good asymptotic performance
– Low proportionality constants
– Fast running times on real-world data
– Robust performance across variety of data
– Robust performance across variety of platforms

Algorithm Engineering
– How to gain speed?

Optimize low-level data structures.
Optimize low-level algorithmic details.
Optimize low-level coding.
Optimize memory consumption.
Maximize locality of reference.

A good understanding of the algorithms is
extremely important.

Algorithm Engineering
– Pencil & paper vs. implementation

Moret defines algorithm engineering as
”Transforming ”paper-and-pencil” algorithms
into efficient and useful implementations.”

Filling in the details.

Experimental Methodology

Methodology
– Algorithmic details

How should the funnel be laid out in memory?
How do we locate nodes and buffers?
How should we implement merge functionality?
What is a good value for z and how do we merge multiple
streams efficiently?
How do we reduce the overhead of the sorting algorithm?
How do we sort at the base of the recursion?
What are good values for α and d?
How do we handle the output of the funnel?
How do we best manage memory during sorting?
...

Methodology
– Algorithmic details cont’d.

Inspired by knowledge of the memory hierarchy and
modern processor technology, we develop several
solutions to each of these questions.
All solutions are implemented and benchmarked to
locate the best performing combination of
approaches.
It turns out, the simpler the faster (except perhaps
memory management).
Increasing α and d is a cheap way of decreasing the
overhead of the funnel.

Methodology
– What answers do we seek?

Are the assumptions of the ideal cache model too
unrealistic, i.e. are the algorithms only
optimal/competitive under ideal conditions?
Will the better utilization of caches improve running
time of our sorting algorithms?
Will the better utilization of virtual memory improve
running time of our sorting algorithms?
Can our algorithms compete with classic instruction
count optimized RAM-based sorting algorithms and
memory-tuned cache-aware EM-based sorting
algorithms?

Methodology
– Platforms

To avoid ”accidental optimization,” we benchmark on several
different architectures:

– MIPS R10k: Classic RISC; short pipeline, large L2 cache, low
clock rate, software TLB miss handling. 64-bit.

– Pentium 3: Classic CISC; twice as deep a pipeline as MIPS, good
branch prediction, many execution units.

– Pentium 4: Extremely deep pipeline, compensated by very good
branch prediction. Very high clock rates.

Several different operating systems supported: IRIX (64-bit),
Linux (32-bit), Windows (32-bit). Benchmarks run on IRIX and
Linux.
Tested with several different compilers: GCC, MSVC,
MIPSPRO, ICC.

Methodology
– Data types

To demonstrate robustness, we benchmark
several different data types:
– Key/pointer pairs: class { long key; void *p; }
– Simple keys: long.
– Records: class { char record[100]; }

Inspired by the official sorting benchmark, Datamation
Benchmark.
Order determined by strncmp().

Methodology
– Input data

To demonstrate robustness, we benchmark several
different input distributions:

– Uniformly distributed.
– Almost sorted.
– Few distinct elements.

Uniform key distribution

-2,500,000,000

-2,000,000,000

-1,500,000,000

-1,000,000,000

-500,000,000

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

K
ey

 v
al

ue

Few disitinct keys

-800,000,000

-600,000,000

-400,000,000

-200,000,000

0

200,000,000

400,000,000

600,000,000

800,000,000

K
ey

 v
al

ue

Almost sorted

-2,500,000,000

-2,000,000,000

-1,500,000,000

-1,000,000,000

-500,000,000

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

K
ey

 v
al

ue

Methodology
– What to measure

Primarily wall clock time.
CPU time is no good, since it does not take
into account the time spent waiting for page
faults to be serviced.
L2 cache misses.
TLB misses.
Page faults.

Methodology
– Validity

For time considerations, we run benchmarks
only once.
Benchmarks are run on such massive
datasets that they each take several minuets,
even several hours.
Periodic external disturbances affect all
algorithms, are always present, and cannot
be eliminated by e.g. averaging.

Methodology
– Competitors

To answer the question of whether our cache-
oblivious algorithms can compete with RAM-based
and memory-tuned cache-aware sorting algorithms,
we compare them with

– Introsort, developed by SGI as part of STL.
– Multiway mergesort, a part of TPIE, tuned for disk.
– Multi-mergesort, developed by Kubricht et al., tuned for L2

cache.
– Tiled mergesort, developed by Kubricht et al., tuned for L2

cache.

Methodology
– The problem

A file stored on a local disk in a native file system
contains a number of contiguous elements.
The problem is solved when there exist a (possibly
different) file with the same elements stored
contiguously in non-decreasing order.
No part of the (original) file is in memory when
sorting begins.

Motivation: We don’t want to favor any particular initial
approach; we believe that real-life applications of
sorting doesn’t.

Inspiration: Datamation Benchmark.

Results

Results
– L2 cache misses

MIPS 10000, 1024/128

0.0

5.0

10.0

15.0

20.0

25.0

30.0

100,000 1,000,000 10,000,000 100,000,000 1,000,000,000

Elements

L2
 c

ac
he

 m
iss

es
 p

er
 li

ne
 o

f e
le

m
en

t

ffunnelsort
funnelsort
lowscosa
stdsort
msort-c
msort-m

Results
– TLB misses

MIPS 10000, 1024/128

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

100.000 1.000.000 10.000.000 100.000.000 1.000.000.000

Elements

TL
B

 m
iss

es
 p

er
 b

lo
ck

 o
f e

le
m

en
t

ffunnelsort
funnelsort
lowscosa
stdsort
msort-c
msort-m

Results
– Page faults

Pentium 3, 256/256

0.0

5.0

10.0

15.0

20.0

25.0

1,000,000 10,000,000 100,000,000 1,000,000,000

Elements

Pa
ge

 fa
ul

ts
pe

r b
lo

ck
 o

f e
le

m
en

t

ffunnelsort
funnelsort
lowscosa
stdsort
msort-c
msort-m

Pentium 3, 256/256

0.1µs

1.0µs

10.0µs

100.0µs

1,000,000 10,000,000 100,000,000 1,000,000,000

Elements

W
al

l c
lo

ck
 ti

m
e

pe
r e

le
m

en

ffunnelsort
funnelsort
lowscosa
stdsort
ami_sort
msort-c
msort-m

Results
– Wall clock time, Pentium 3

Pentium 4, 512/512

0.1µs

1.0µs

10.0µs

100.0µs

1,000,000 10,000,000 100,000,000 1,000,000,000

Elements

W
al

l c
lo

ck
 ti

m
e

pe
r e

le
m

en

ffunnelsort
funnelsort
lowscosa
stdsort
ami_sort
msort-c
msort-m

Results
– Wall clock time, Pentium 4

MIPS 10000, 1024/128

1.0µs

10.0µs

100.0µs

1000.0µs

100,000 1,000,000 10,000,000 100,000,000 1,000,000,000

Elements

W
al

l c
lo

ck
 ti

m
e

pe
r e

le
m

en

ffunnelsort
funnelsort
lowscosa
stdsort
msort-c
msort-m

Results
– Wall clock time, MIPS R10000

Conclusion

Conclusion

Very high performing generic sorting
algorithm.
Unique to our algorithms, performance
remains robust
– across wide range of input sizes.
– on several different data types.
– on several different input distributions.
– across several different processor and operating

system architectures.

References

Bernard M.E. Moret and Henry D. Shapiro. Algorithms and Experiments: The New (and
Old) Methodology, Journal of Universal Computer Science, 7:434-446, 2001.
Alok Aggarwal and Jeffery S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 1988.
Matreo Frigo, Charles E. Leiserson, Harald Prokop, and Shidhar Ramachandran. Cache-
oblivious algorithms. Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, New York, 1999.
David S. Johnson. A Theoretician’s Guide to the Experimental Analysis of Algorithms.
Proceedings of the 5th and 6th DIMACS Implementation Challenges. Goldwasser,
Johnson, and McGeoch (eds), American Mathematical Society, 2001.
Datamation Benchmark. Sort Benchmark Home Page, hosted by Microsoft. World Wide
Web document, http://research.microsoft.com/barc/SortBenchmark/, 2003.
Duke University. A Transparent Parallel I/O Environment, World Wide Web Document,
http://www.cs.duke.edu/TPIE/, 2002.
Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht. Improving Memory Performance of
Sorting Algorithms, ACM Journal of Experimental Algorithms, Vol. 5, 2000.

