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Chapter 5  

Engineering the Algorithms 

Having presented the algorithms in a theoretical setting, it is now time to start looking 
at them from a practical perspective.  In this chapter, we do a thorough investigation of 
what can be done to maximize performance of the algorithms presented in the previous 
chapter. 

We will look into the design choices left open in the previous chapter and fill in the 
details while following a path leading to an implementation of high performance. In 
mergesort algorithms, in general we cannot avoid doing NlogN comparisons and 4N/B 
I/Os. The mergesort algorithms we investigate also achieve this, so maximizing 
performance largely amounts to minimizing overhead. In this chapter, we will focus on 
possible approaches to minimizing overhead and evaluate these approaches through 
experimental analysis. 

In the next chapter, we will compare our implementation to that of other algorithms. 
For that, it is important to ensure we have a reasonable efficient implementation 
[Joh01]. The results presented in this chapter provide knowledge of what combination 
of parameters and algorithmic details yield fast algorithms and data structures. This 
knowledge is then combined into optimized cache-oblivious sorting algorithms, the 
performance of which will be evaluated in the next chapter. 

We begin this chapter with a section with general considerations on how we evaluate 
performance of algorithms. The remaining chapter is then dedicated to the 
implementation of the algorithms. In Section 5.2, we provide an overview of the 
structure of and the pieces that make up the implementation. In Section 5.3, we look 
into aspects of the funnel data structure. Of particular interest in this section is how to 
manage the data structure and how to implement a high performing fill algorithm. 
Section 5.3.4 focuses on the funnelsort algorithm. We provide a few optimizations and 
investigate good parameters for determining subproblem sizes and buffer sizes of the 
funnel. Section 5.3.4 provides a discussion on implementation details of the 
LOWSCOSA. 

5.1 Measuring Performance 
The focus of this and the next chapter will be on performance evaluation. Before 
presenting any benchmarks, we want to make clear exactly what it is we will be 
showing. The following is an overview of how the benchmarks, presented in both this 
and the next chapter, are conducted.  
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5.1.1 Programming Language 
For portability and more importantly genericity, the algorithms are implemented in a 
generic high-level language. The language chosen is C++ [C++98]. The primary reason 
for this is that it allows for producing high performing code, while implementing 
generic algorithms. C++ was designed to have optimal run-time efficiency; depending 
on compiler quality, abstraction penalties are minimal. In addition, the accompanying 
library, the Standard Template Library (STL), contains a highly optimized sorting 
function, named std::sort, with which we may compare the algorithms developed here. 

5.1.2 Benchmark Platforms 
The underlying platforms for the benchmarks have been chosen based on diversity and 
availability. As discussed in Chapter 2, different processors and operating systems 
behave and perform different under certain circumstances. It is thus important to cover 
as many types of processors as possible, when arguing that the design choices made 
will be sound on not one but many different architectures. Our implementation would 
only be compelling to people using one particular platform, were we only able to show 
high performance on that type of platform. 

We feel it is important to benchmark in real world scenarios and have thus chosen 
not to use simulation tools and to use the memory subsystem as is; we will not reduce 
the memory available to our algorithms artificially. The fact that modern computers 
now come with at least half a gigabyte RAM makes results obtained on machines 
artificially restricted to 32 or 64 MB of RAM of no practical relevance. 

Hardware 
Benchmarks made on three radically different architectures to ensure that we do not 
accidentally tune the algorithms for a specific architecture, thus defying one of the 
design goals of cache-oblivious algorithms. The architectures are Pentium 3, Pentium 4 
and MIPS 10000 based. Their specifications can be found in Appendix B. 

The Pentium 3 platform represents the traditional modern CISC. It has a pipelined, 
out-of-order, and super-scalar core. Its pipeline is as short (12 stages) as seem sensible 
when designing CISCs. The Pentium 2 and the AMD Athlon both have designs similar 
to the Pentium 3 and is thus expected to perform comparatively. The Pentium 4 
computers represent a significant change in design philosophy. They signify a departure 
from the ideal of keeping pipelines short to minimize the cost of pipeline hazards and 
feature a 20-stage pipeline. This means that a branch miss-predict may waste as much 
as 20 clock cycles. The benefit of the long pipeline is very high clock rates. In 
applications such as sorting, where unpredictable conditional branches are 
commonplace, a 20-stage pipeline may well cause performance to degrade despite the 
high clock rate. To counteract the performance loss due to branch miss-predicts, the 
Pentium 4 employs the most sophisticated branch prediction logic of the three 
processors. Whether it will help it in the context of sorting remains to be seen. 

To represent the RISC family of processors, we include a MIPS 10000 based 
computer. It has a traditional 6-stage pipeline and the simplicity of the core has made 
the inclusion of a large 1MB L2 cache possible. A notable feature of this processor is 
its ability to use an address space larger than 232 bytes. Its word size is 64 bits both 
when used as address operation operands, and in the ALU. It is a relatively old 
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processor and it is significantly slower than the Pentiums, so unfortunately due to time 
constraints, it could not participate in all benchmarks, though we have included it in all 
benchmarks presented in this chapter to guarantee that our implementation is not 
optimized for the Pentiums alone. 

We feel that these three platforms are representative of most computers in use today 
in that most processors in use to day have a design resembling one of these three CPUs. 

Software 
On the software side, the Pentium computers are running the Linux operating system 
and the MIPS computers are running the IRIX operating system. The primary 
development platform, however, has been Windows. We feel that this has also 
contributed to diversifying the code. 

The compilers used are listed in Appendix B. All executables used to generate 
benchmark results were compiled using the GNU Compiler Collection (GCC), which is 
the only one available on all platforms used. This was done to ensure that no algorithm 
had the benefit or detriment of good or poor code generation from the compiler, on any 
of the platforms. Say, for example, the MIPS Pro compiler is very good at generating 
code for funnelsort and not for std::sort. This would then put aspects of std::sort in a 
particular bad light, but only on the IRIX platform. We have found that for our 
experiments, the GCC generates code that is at least as good as any of the other 
compilers used generates. If anything, it generates very fast code for the quicksort 
implementation included in the standard library. The code generated by the MIPS Pro 
compiler was of equal quality, but both the Intel and Microsoft compilers generated 
significantly slower code.  

5.1.3 Data Types 
Sorting is used in a wide variety of applications. It is important that our benchmarks 
closely reflect as many applications as possible [Joh01]. Recent efforts in developing in 
particular cache-efficient sorting algorithms have opted to evaluate the performance 
sorting elements consisting only of a single integer key ([LL99], [XZK00], and 
[ACV+00]). We feel, however, that sorting only integers is of limited applicability; 
some sort of information should be associated with the integers. At the very least, a 
pointer to some structure should accompany the integer. This may have an impact on 
algorithms that move elements a lot. 

Inspired by the Datamation Benchmark, in turn inspired by sorting problems 
encountered in the database community, we have included a type of size 100 bytes 
[DB03]. The problem in the Datamation Benchmark originally consisted of sorting one 
million such records. This has since proved too easy and the total time became 
dominated by startup time. In response, the problem was changed to that of sorting as 
many records in one minute. This is known as the Minute Sort Benchmark. Since there 
are no restrictions on the platforms used when performing the benchmark, these 
benchmarks are largely a test of hardware and operating system I/O subsystems, rather 
than algorithm implementation. To allow contenders with limited finances to compete, 
the Penny Sort Benchmark was introduced. This benchmark is essentially the Minute 
Sort Benchmark with the result scaled by the price of the platform used in dollars. 
Algorithms competing in this benchmark are however still designed to be fast on one 
specific platform. 
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For our benchmarks, we choose to look at these three data types: 

▪ Integers. This data type is simply a long. 
▪ pairs. These represent key-value pairs and are implemented as class with data 

members of type long and void*. Their relative order is based on the value of the 
long. 

▪ records. Represents database records or equivalents. They are implemented a class 
with a data member of type char[100]. Their relative order is determined by the 
strncmp function of the C standard library, such that the entire record is also the 
key. 

Note that on the MIPS machine, both long and void* are 64-bit, while they are 32-bit 
on the Pentiums. 

It would be infeasible to conduct the entire study in this chapter with several 
different data types. Thus in this chapter we will only use pairs. We then risk optimizing 
for relatively small data types. We will be weary of this when it comes to choosing 
between implementations that favor small elements, and then evaluate the performance 
of our implementation used on all three data types in the next chapter. 

For the same reason, in this chapter, we limit the experiments to uniformly 
distributed random data. In addition, we do not want to optimize for any special case 
distribution, and since some results could be highly dependant on the distribution of 
elements and our algorithm implementation should not favor any distribution, we 
conduct the experiment on uniformly distributed pairs. 

To generate random keys, we use the drand48 function available on both Linux and 
IRIX. In Windows, we use the rand function of the C standard library. 

5.1.4 Performance Metrics 
We may measure performance of our implementations by several ways. Here we bring 
an overview of the metrics used in this thesis. 

Running Time 
Of absolute primary concern is the total time spending solving the problem (sorting, 
merging, or other) measured on a physical clock. This measure is an indication of how 
long one would wait for the problem to be solved, which we believe to be of primary 
concern to the user of our algorithms. 

As an alternative to the wall clock time, one may use the CPU time. That is the total 
time the algorithm is actually running on the processor. This measure is important if we 
were to estimate how much the processor would be occupied by the solving the 
problem. This could be of concern when other processes need access to the CPU. 
However, our implementation will not be designed with multiprocessing in mind. 
Furthermore, measuring the CPU time does not take the time the algorithm spends 
waiting for a page fault into account, because during this time, it is not scheduled on the 
CPU. Thus, we will not consider CPU time for our benchmarks. 

The wall clock time is determined using the gettimeofday C library function. In Linux 
and IRIX, it appears to have a precision in the order of microseconds. In Windows, it 
appears to have a precision of milliseconds only, so we use the high-resolution 



   65 
5.1.5 Validity 

   

performance counter available through the QueryPerformanceCounter API. This appears 
to have a precision of a couple of nanoseconds. 

Page Faults 
Albeit not of primary concern, the number of page faults incurred running the algorithm 
may provide us with important insights into the behavior of the total running time of the 
algorithm. 

In the next chapter, when sorting large data sets, we will thus also present the 
number of page faults incurred by the algorithms. For this, we use the get_rusage system 
call in Linux and IRIX. This call provides both the number of minor and major page 
faults. Since only the major page faults have significant impact on performance, on that 
number will be reported. In Windows, we assign a job object to the process and use the 
QueryInformationJobObject API. 

Cache and TLB misses 
Aside from the number of page faults, the number of cache and TLB misses also 
influence performance. Performance Application Programming Interface (PAPI) allows 
for monitoring hardware counters [PAPI03]. Hardware counters can keep track of 
cache misses, TLB misses, and similar hardware events. PAPI is a cross-platform 
software library that provides access to these counters. Unfortunately, to make the 
Linux version work, a patch has to be applied to the kernel and we did not have that 
privilege for our test machines. 

No patch was needed for the IRIX version, however, so we can use PAPI on the 
MIPS machine to show the cache behavior of the algorithms. We will be measuring the 
number of L2 cache misses (the PAPI_L2_DCM event) and TLB misses (PAPI_TLB_TL). 

5.1.5 Validity 
To provide valid and relevant experimental analysis, we should attempt to even out any 
disturbances in the results due to effects external to the algorithm, such as the 
scheduling of other processes running on the system. This may be achieved through 
more or less elaborate ways of averaging results from multiple runs of the same 
algorithm on the same problem. 

In this thesis, however, we deal with such massive data sets, that individual 
benchmark runs take several minuets, sometimes even several hours. In comparison, 
any anomalies due to process scheduling or other operating system operations often 
cause no more than in the order of milliseconds of delays in the running time, so we do 
not expect this to influence our results greatly. Periodic scheduling of other processes 
may interfere significantly with the result of the benchmark. However, such 
interference is only normal in modern multiprocessing environments. 

Primarily for time considerations, we choose to run each benchmark only once. This 
means that sudden “jumps” in measurements may be present in the results. However, 
we will attempt to run them with as many different parameters as feasible, to expose 
any systematic behavior of interest, and to expose what may be irregularities and what 
reflects actual algorithm performance. 
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5.1.6 Presenting the Results 
A vast number of benchmarks have been run. Not all of them present new and relevant 
information. To avoid cluttering the discussion in the present chapter, the results of all 
benchmark are included in Appendix C and in electronic form as described in Appendix 
A, and only the ones that present relevant information will be included in the text. For 
the rest of the results, we thus refer to Appendix A. The results are presented in Charts 
and their number in the appendix corresponds to their number in this chapter. The titles 
of the charts are consistently titled <processor>, <cache size>/<RAM size> with <…> 
substituted with values of the machine they were run. 

The engineering effort carried out in this chapter is intended to compare different 
approaches to solving the same basic problems; they should not be viewed as 
performance evaluations of the individual implementations. Thus, when comparing an 
algorithm using method A with B and C, we prefer to show the performance of method 
B and C relative to A. This is done to emphasize what is the focus of this chapter, 
namely identifying approaches to implementing the algorithms that maximize 
performance. A more absolute performance analysis is carried out in the next chapter, 
when we have found the best way to implement the algorithms. 

For each benchmark, we discuss exactly which part of the algorithm we will be 
analyzing. Each benchmark is accompanied by a discussion of the results, relating them 
to design choices made. Based on this we draw conclusion on what choices result in 
efficient implementation solving the problem. 

5.1.7 Engineering Effort Evaluation 
The engineering effort presented in this chapter seeks to find a good way to implement 
the algorithms. To do this, a series of questions need to be answered, such as 

▪ How should the funnel be laid out in memory? 
▪ How do we locate nodes and buffers in the funnel? 
▪ How should we implement the merge functionality? 
▪ What is a good value for z and how do we merge multiple streams efficiently? 
▪ How do we reduce the overhead in the sorting algorithm? 
▪ How do we sort at the base of the recursion? 
▪ What are good functions for determining output buffer sizes and sizes of 

subproblems to recurse on in the sorting algorithm, i.e. what are good values for α 
and d? 

All of these questions have multiple possible answers that will influence the 
performance of our implementation. The answer to one question does not necessarily 
influence the answer to another. Finding the answer to all questions that combine to 
yield an optimally performing implementation implies searching the entire space of 
possible combinations of answers. This space is so vast it would simply be infeasible. 
What we thus do in this chapter is examine one question at a time, first determining the 
best layout of the funnel, then the best way to locate nodes, and so on. We suspect that 
the result of this investigating the design options in this manner will bring us very close 
to an optimally performing implementation. 

Since α and d influence both the funnel data structure and the funnelsort algorithm, 
we postpone the analysis of what constitute good values until the implementation 
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details have been settled. Until then, we do not know what values will yield a fast 
sorting algorithm, so we choose by intuition. As a guideline, we choose large values 
when analyzing choices that influence merging, such as how to implement binary 
merging, and large values for choices that concern the tree structure, such as layout of 
the funnel. Since small values will yield small buffers and thus fewer elements merged 
per node we visit, we will expose aspects of the performance relating to operating the 
funnel. Conversely, large values will yield large buffers and likely more elements 
merged per node we visit, thus emphasizing the performance of the implementation of 
the merging algorithm. Regardless of the choice of values for the constants, for 
consistency we merge k streams of k2 elements. This may not be the ideal for all values 
of the constants, but it is necessary to compare across different values of constants, 
since merging k′ < k streams is easier than merging k streams. 

When measuring performance of the funnel (Section 5.3) we do not store the output 
of the funnel, we only check that the elements are output in sorted order. We do this to 
eliminate the overhead of writing and storing all the elements. Since this overhead is 
common for all implementations of the funnel, it does not influence a study comparing 
different implementations. As an added benefit, we automatically verify that the result 
of the algorithm is correct. 

5.2 Implementation Structure 
In this section, we give an overview of the pieces that make up the implementation, 
how they relate to each other, and what their roles are. We provide illustrative 
interfaces and defer the implementation details to the following sections. 

5.2.1 Iterators 
The concept of iterators is used extensively in the STL. An iterator has the functionality 
of a traditional pointer, in that it can be dereferenced to give the object it points to. As 
with pointers to elements in arrays, an iterator can also be incremented to point to the 
next element. However, any class with these properties is an iterator, so iterators serve 
as a generalization of the traditional pointer and its relationship with the array; they 
represent a general way of iterating through the elements of a data structure (container 
of elements) in essence, a way of flattening the structure.  

Using iterators is the primary way of implementing generic algorithms in C++. The 
algorithm is designed without any knowledge of with what type of iterator it is used. By 
this token, we can implement any container of elements and have an algorithm work on 
it by implementing an iterator for it. In that sense, iterators are the glue that binds 
together algorithms and elements. By abstracting away the implementation of the 
iterator from both the containers and the algorithm, any algorithm can be made to work 
with any set of elements. 

Some containers are not as easy to navigate as arrays. For instance, one cannot (at 
least in constant time) add, say, twenty to an iterator pointing to an element in a linked 
list and get an iterator pointing to the element twenty past the original. For this reason, 
the STL defines six categories of iterators, by what operations can be done on them in 
constant time: 
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▪ Input iterator. An iterator that can only be dereferenced, incremented and 
compared for equality. 

▪ Output iterator. An iterator that can only be dereferenced and incremented. The 
result of a dereference must be assignable, that is, the expression *x = t, ++x must 
be valid for some object t if x is an output iterator. Equality comparisons are not 
requred by output iterators. 

▪ Forward iterator. An iterator that can be dereferenced and incremented. Further, an 
iterator can be compared with other iterators to determine the relative positions of 
elements they point to. The result of a dereference should be a reference to an 
object, as opposed to output iterators that are allowed to return proxy object to 
which objects can be assigned. 

▪ Backward iterator. Same as a forward iterator, except it can be decremented, not 
incremented. 

▪ Bidirectional iterator. An iterator that is both a forward and a backward iterator. 
▪ Random access iterator. An iterator with all the functionality of a traditional 

pointer; a distance between two elements can be computed and integer arithmetic 
can be done on it and iterators can be advanced a given distance. A random 
iterator is also a bidirectional iterator. 

A goal when designing algorithms is to restrict the requirement of the iterators used, 
as much as possible. 

We will be using the iterator abstraction throughout the implementation. 

5.2.2 Streams 
A stream is a sequence of elements. Its state consists of where to find the next element 
and how many remain. To this end, we simply represent streams as a pair of input 
iterators, one that points to the next element, and one that points one past the last 
element. A stream is constructed from two such iterators. The iterator pointing to the 
next element is returned by the member function begin and the iterator pointing the one 
past the last element is returned by end. 

Most containers implemented in the STL, such as std::vector, std::list, and std::set, 
have member functions begin and end with the same semantics. Streams can thus be 
used as wrappers for any of these containers, as well as ordinary arrays. Streams may 
also be used to represent continuous (in the sense of the iterator) subsets of the 
containers, in essence slices of the flattened data structure. 

5.2.3 Mergers 
The STL provides a binary merge algorithm. It is declared as  

template<class InIt1, class InIt2, class OutIt> 
OutIt merge(InIt1 begin1, InIt1 end1, InIt2 begin2, InIt2 end2, OutIt dest); 

where the InIt name indicates that it only requires begin1, end1, begin2, and end2 to be 
input iterators and the OutIt indicates that dest should at least be an output iterator. The 
precondition is that there are a sorted set of elements between begin1 and end1, and 
between begin2 and end2. When the function returns, all elements of these sets have 
been written consecutively to dest, by dereferencing, assigning, and incrementing. 
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For merging in our implementation, a somewhat different approach is needed. First, 
we may want to merge more than two streams at a time. Secondly, a different set of 
semantics is needed. We need two kinds of mergers: the general merger and the basic 
merger. Their semantics differ and their interfaces reflect it, yet they are similar. 

To accommodate for more than two input streams, both are implemented as function 
objects rather than functions. Function objects are simply objects that can be used as 
functions. As any object, they maintain a state. The input streams of a merger are then a 
part of the state of the function object, allowing us to add input streams to the merge 
function. With the merge interface of the STL, we are restricted by the number of 
arguments we can provide; however, there is no language restriction on the number of 
times, we can alter the state of a function object. 

The basic merger has a compiletime set limit on the number of streams it can merge. 
Between zero and that limit of streams can be associated with it. Empty streams cannot 
be associated with a basic merger. Attempting to do so will have no effect. The 
semantics is essentially that of the Algorithm 4-4 on page 48; it merges as long as there 
is room in the output and elements in all associated streams. The associated streams are 
updated to reflect that elements have been extracted. To pass on information about 
which stream caused the merger to stop by becoming empty, we use a concept of 
tokens. When a stream is associated with the basic merger, a token is in turn associated 
with the stream and when invoked, the basic merger is given the output and what token 
to associate with the output. When done merging, it simply returns the token associated 
with the stream that caused it to stop. The interface looks like this: 

template<int Order, class InStream, class Token> 
class basic_merger 
{ 
public: 
 typedef Token token; 
 void add_stream(InStream *s, token t); 
 template<class FwIt> 
 token operator()(FwIt& dest, FwIt dest_end, token outtoken); 
}; 

Note that tokens can be anything from a simple integer indicating the number of the 
stream or a pointer to a complex user defined object. They are expected to be small, 
however. Note also that the first argument of the operator() is passed by reference, so it 
too can be updated. We require forward iterators because we need to be able to 
compare them to see if we have hit the end of the input. Order is the order of the 
basic_merger, also denoted z. If add_stream is called more than Order times with non-
empty streams the state of the merger becomes undefined, as is the state after a merger 
has been invoked. As a simple illustration, here is what Algorithm 4-4 could look like 
using a basic merger: 
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template<class Node> 
void fill(Node *n) 
{ 
 basic_merger<2,typename Node::stream,Node*> merger; 
 merger.add_stream(n->left_input, n->left_child); 
 merger.add_stream(n->right_input, n->right_child); 
 n = merger(n->out_begin, n->out_end, NULL); 
 if( n ) 
  fill(n); 
} 

In this example, we use Node* as tokens. The right input buffer is associated with the 
right child and the same with left. For the output token, we simply use NULL, so if the 
merger returns non-null, we call recursively on the node returned. 

General mergers will be used on a larger scale and should thus provide for an 
arbitrary number of input streams. The semantics differ from the basic merger either in 
that it merges until the output is full or until all input streams are empty. This 
eliminates the need for tokens. The interface looks like this: 

template<class InStream, class Refiller, class Allocator> 
class general_merger 
{ 
public: 
 general_merger(int order); 
 general_merger(int order, const Allocator& a); 
 static typename Allocator::size_type size_of(int order); 
 void add_stream(const InStream& s); 
 template<class OutIt> 
 OutIt operator()(OutIt dest, OutIt dest_end); 
 template<class OutIt> 
 OutIt empty(OutIt dest, OutIt dest_end); 
 void reset(); 
 void set_refiller(const Refiller& r); 
 const Refiller& get_refiller(); 
 stream_iterator begin(); 
 stream_iterator end(); 
}; 

Among the main differences are that streams are now copied and maintained 
internally; there is no obligation to maintain associated streams. It is still possible to see 
how far the streams have advanced, by running through them using the stream_iterators 
returned by begin and end. It is possible to invoke the merger repeatedly. The empty 
member function template is there in anticipation of the merger storing elements 
internally after they have been read from the input and before they are written to the 
output. empty then provides a way of retrieving these elements, in no particular order. 
The reset member function sets the begin iterator of each stream to the end, essentially 
marking them all empty, and resets the internal state of the merger. This has the effect 
of destroying the merger and creating a new one with the same order. The get_refiller 
and set_refiller provides the interface for adding a refiller as described in Section 4.2.1. 
The rest of the interface has to do with memory management, to which we will return. 
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5.3 Funnel 
We choose to implement the two-phase funnel, not because it is the easiest to 
implement, but because the simplicity it brings to prior funnel variants will not make it 
perform any worse and likely make it perform better, as discussed in Section 4.1.1. The 
funnel is a k-merger and when input streams are added, its implementation as such 
follows the interface of a general_merger. 

5.3.1 Merge Tree 
We will denote the combined funnel and input streams a merge tree. A merge tree 
consists of nodes and buffers. Buffers can contain any number of elements. These 
elements can only exist contiguously in the buffer, but they need not be located at the 
tail or the end of the buffer. When calling fill on a node, we need to identify where the 
elements are in the buffer, so we can resume from where we left off the last time we 
were filling its output buffer. A minimal description of the state of the merger is thus a 
pair of iterators for each buffer. Conceptually, a node may also contain pointers to 
where the buffers begin and end, as well as its parent and its children. 

While a node need not maintain pointers for both its input and output buffers, it 
should do so for either the inputs or the output. Which one is not clear; a natural one to 
one relation ship exist between a node and its output, however, if we have no 
information about the state of the input buffers of a node, we have to go to the child 
nodes to get it, when we first start filling. This can reduce locality of reference, since 
nodes are not generally located near their children. We consider that an important 
aspect, so in our implementation we choose to let a node be responsible for the state of 
its input buffers. Figure 5-1 illustrates a node (with z = 2), the triangle, before fill returns 
from its right child. Also depicted are four pointers per buffer. Head (h) and tail (t) 
indicate the beginning and end of the contiguous section of elements in the buffers and 
begin (b) and end (e) indicate the beginning and end of the entire buffer. 

 
Figure 5-1. The pointers involved in a fill operation. 
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The situation in the figure is that prior to invoking its right child, fill called fill on the 
left child. That fill operation caused the subtree to become exhausted and thus the output 
was not completely filled. Some elements were then merged from the left input before 
the right got empty and fill was invoked on the right child. It, in turn, exhausted its 
subtree before returning. 

Basic mergers are used to carry out the fill. Before invoking the basic merger, 
streams consisting of the head and tail of the input buffers are added to it, using 
add_stream. Then it is invoked with head and tail of the output as its arguments. This 
requires an invariant that elements in input streams lie from head to tail and elements in 
the output stream lie between begin and head. To maintain this invariant, we flip the 
buffers with a flip operation as we pass them when calling recursively on a child node 
or return from a recursive call. It consists of the double assignment (t = h, h = b). When 
returning from a fill, by induction, we know that the buffer we passed contain elements 
from b to h. After the flipping the buffer, we have h equal to the old b, the beginning of 
the elements, and t equal to h, the end of the elements, and thus a valid input buffer. 
Conversely, when calling recursively and passing an input buffer the flip operation 
turns the buffer into a valid output buffer. 

As discussed, the gereral merger interface allows for arbitrary types of input streams, 
while the funnel maintains its own buffers. These buffers are elements allocated from 
the heap and the iterators used when merging them are simple pointers stored in the 
nodes. However, the input streams of the general merger cannot in general be 
represented by a pair of pointers. This presents two problems. First, we are wasting 
space storing pointers we are not using. Second, the leaves do not readily know from 
where to get the input. The first problem is easily solved by not actually allocating 
space for the leaf nodes.1 We may then say that pointers the non-existing leaves in their 
parents are wasteful, however they are not, because we need some way to distinguish 
internal nodes from leaf nodes. The second problem is solved by storing the input 
streams in a separate array. When calling recursively, we keep track of the path we took 
and use it to locate the appropriate streams in the array. This in turn will give a minor 
overhead, however we consider it a small price to pay to get genericity. 

5.3.2 Layout 
As early as 1964, laying out trees in a particular way was known to be useful; careful 
layout of the tree used in the implementation of the heap, paved the way for the in-place 
heapsort [Wil64]. For our purpose, neither the analysis nor the correctness of the 
algorithms requires us to lay out the tree in any particular way. However, as we saw in 
Section 3.1.3, page 32, in case of binary search and as shown through experimental 
analysis in [BFJ02] and [LFN02], a well-chosen layout of the tree can yield a 
significant increase in performance. 

As we have seen in Section 3.1.3, using the van Emde Boas layout for binary search 
trees gives an asymptotical reduction in the number of memory transfers incurred. That 
is not the case in when dealing with funnels. However, as argued in the proof of 
Theorem 4-3, fill does a number of tree operations, including recursive call invocations, 
flip operations, etc., proportional to the total number of comparisons and moves 
                                                 
1 Our implementation does not current exploit this observation. It allocates a full tree, but never actually 
visits the leaf nodes. 
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performed, and thus visits a new node a significant number of times. Laying out nodes, 
so they are near each other, may then increase the algorithms overall locality 
significantly. 

Aside from increasing locality, using controlled layout allows us to compute the 
position of the nodes relative to each other. This eliminates the need for accessing 
pointers to children stored in nodes and the potential data hazard in the pipeline. This 
latter aspect may well be as important as the first. 

Implementation 
In the implementation of the funnel, we use the STL concept of an allocator. The 
allocator is simply a class, through which algorithms can dynamically create objects. 
All containers in the STL provide a way for the user to supply an allocator. By 
abstracting away the allocation mechanism, the user of the containers is free to provide 
their own allocators and thereby control how objects are dynamically created. Such a 
mechanism is also provided through the new operator; however, the new operator is 
global and cannot be customized on a per algorithm or per container basis. If the user 
does not supply an allocator a default allocator, std::allocator, is used. std::allocator in 
turn uses the new operator. 

The construction and destruction of funnels are done through a layout class template. 
Its interface is simple; the only reason for putting this functionality in a class is that we 
may parameterize funnels over different implementations. 

template<class Navigator, class Splitter, class T, class Allocator> 
class layout 
{ 
public: 
 typedef typename Navigator::node node; 
 static node *do_layout(int order, Allocator& alloc); 
 static void destroy(node *root, int order, Allocator& alloc); 
}; 

The interface consists of two static member functions: do_layout and destroy. 
do_layout allocates and lays out a complete tree of a given order and returns a pointer to 
the root, and destroy tears down and deallocates the tree. It is parameterized by a 
navigator (see below), a splitter defining the size of the buffers, the type of elements in 
buffers and finally the allocator. 

The Splitter plays the important role of deciding at what height we split the funnel 
when doing the van Emde Boas recursion (our implementation simply returns h/2, with 
h being the height of the funnel being split) and what capacity the output buffer of a k-
funnel should have. As such, it is used extensively throughout the implementation of 
both the funnel and funnelsort. 

A given layout implementation ensures that allocating nodes and arrays of elements 
is done in a specific order. Achieving correct layout then relies on the allocator 
fulfilling memory requests in a contiguous manner. Our implementation includes an 
allocator, stack_allocator that does this by allocating a large chunk of memory once 
using new and move and return a pointer into this chunk, in response to memory 
requests. The amount of space needed for the initial allocation has to be determined at 
allocator construction time. For general mergers, the space needed is computed exactly 
by the static size_of member function. 
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Mixed and Pooled Layouts 
Each layout comes in two variants. One that, as described below, allocates nodes and 
buffers intermixed, and one that allocates a pool of elements in which the buffers are 
placed. The first variant is called mixed, the latter pooled. The pooled layouts result in 
nodes being allocated together, much like the search trees of [BFJ02] followed by 
buffers laid out contiguously. 

The van Emde Boas Layout 
We have already discussed the van Emde Boas layout. In our implementation, it is 
realized by first recursively laying out the top tree then for each bottom tree from left to 
right, allocating its output buffer then recursively laying out the tree. Figure 5-2 shows 
a funnel laid out in the array below it. Note the stack_allocator allocates backwards. 

 
Figure 5-2. The van Emde Boas mixed layout. 

Breadth-first Layout 
The breadth first layout was the layout used in [Wil64] for implementing heaps. The 
nodes of the tree are allocated in the order they are visited by a left-to-right breadth first 
traversal of the tree. This is achieved by recursively allocating a funnel of height one 
smaller and then allocate the leaf nodes and their output buffers from left to right. The 
number by the nodes and buffers in Figure 5-4 show the order in which they are 
allocated. The numbers in Figure 5-3 shows the relative positions of nodes and buffers, 
when using pooled breadth-first layout. 
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Figure 5-3. Breadth-first pooled layout. 

 
Figure 5-4. Breadth-first mixed layout. 

Depth-first Layout 
In the depth-first layout, the nodes and their output buffers are allocated in the order 
they are visited in a left-to-right depth first traversal of the tree. This is achieved by 
allocating the root and recursively allocate the subtrees below it from left to right. 
Before allocating the subtrees, their output buffer is allocated. The order can be seen in 
Figure 5-5. 
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Figure 5-5. Depth-first mixed layout. 

5.3.3 Navigation 
A class known as a navigator is responsible for locating the parts of the funnel. 
Confining this functionality to a class allows us to experiment with different ways of 
traversing the funnel. Its interface is as follows: 

template<class Node, class Splitter> 
class navigator 
{ 
public: 
 typedef … token; 
 typedef … bookmark; 
 typedef Node node; 
 typedef typename Node::stream buffer; 
 token parent(); 
 token child(int i); 
 navigator& operator+=(token t); 
 navigator& next_dfs(); 
 template<class Functor> 
 Functor enum_buffers(Functor f); 
 level_iterator begin_level(int depth); 
 level_iterator end_level(int depth) 
 bookmark mark() const; 
 bool operator==(bookmark m) const; 
 bool operator!=(bookmark m) const; 
 bool is_root() const; 
 bool is_leaf() const; 
 buffer *input(); 
 buffer *output(); 
}; 

Navigators resemble iterators in that they represent a single node in a data structure; 
however, they are capable of going in more directions than forward and backward. To 
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support this in a generic way, we introduce a new token type, used to represent 
directions. Going to the parent is one direction and going to each of the children is 
another. The navigator is responsible for flipping buffers it passes. 

The begin_level and end_level member functions provide a way to iterate through 
nodes on a specific level. level_iterators are bidirectional iterators dereferencing to 
pointers to nodes. This is used to tell the nodes where their children are placed during 
the construction and layout of the tree (hence the dependency of layout class on 
navigator classes). next_dfs moves the navigator to the next node in a search, where the 
nodes are enumerated in a way that when we visit a node, we have visited all nodes 
below it. This is used in the warm-up phase. enum_buffers provides for a way of 
enumerating buffers. This is used for resetting the merger for and emptying the buffers. 

A simple implementation of a navigator is one that relies on the nodes to supply the 
address of their children and parents, but that requires the space in each node and the 
navigator to access these pointers. We define four categories of nodes, based on the 
information stored in them: 

▪ Simple node. A node that stores nothing but the head and tail of its input streams. 
▪ Flip node. A simple node that also stores the beginning and end of their input 

buffers. As the name implies, these nodes can flip their own input buffers. 
▪ Pointer node. A simple node also storing the address of its children. 
▪ Pointer flip node. A flip node also storing the address of its children. 

Navigators that are more sophisticated will require less information of the nodes. 
Note that no category of nodes requires the node to store pointers to its parents. The 
reason for this is that the navigator can store pointers to nodes on the path to the current 
node, on a stack using much less space. On another stack, navigators keep information 
about output buffers on the path from the root to the current node. This is to avoid 
accessing data in the parent node. 

A general pointer_flip_navigator has been implemented. It requires the funnel to be 
built using pointer flip nodes and all operations are implemented using the two 
mentioned stacks and the information stored in the nodes. Aside from the two stacks, a 
pointer to the current node is maintained and tokens are simply pointers to nodes. 

If we choose to use the default allocator, we have no guarantee of where nodes and 
buffers are placed, so we are forced to use pointer flip nodes and the 
pointer_flip_navigator. When using stack_allocator and the mixed variants of the layouts, 
we know that the output buffer of a node lies immediately after the node itself. Using 
pointer nodes, the beginning of the i’th buffer can be obtained by adding the size of a 
node to the address of the i’th child, thus providing the information needed in a flip 
operation. When using the stack_allocator, we know where the nodes and buffers are 
placed. Our implementation includes navigators that exploit this for all pooled layouts 
and for the mixed variant of the van Emde Boas layout. For pooled layouts, we must 
use at least flip nodes, while the navigator for mixed van Emde Boas only requires 
simple nodes. We compute the address of the parents and children of each layout in the 
following way: 

For the pooled breadth-first layout, the i’th child (counting from 0) of a node 
positioned at index j is located at index (j-1)z+i+2 and its parent is located at index (j-
2)/z+1. For the pooled depth-first layout, we use a measure d that is the distance 
between the child nodes. When at the root, d is the number of nodes in a full tree of 
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height one smaller than the funnel.  The i’th child of a node positioned at index j is then 
located at address j+id+1. When going to a child we integer divide d with z. When 
going to the parent, we multiply and add one, and the index becomes j-id-1, where the 
node is the i’th child of the parent. i is computed as (k+z-2) mod z, with k being the 
breadth-first index. The result of these operations gives us the index of a node in the 
layout, with the root located at index 1. The final address is then computed by 
subtracting this index from the known location of the root. For this to work, we use 
perfect balanced trees as discussed below. 

For the mixed van Emde Boas layout, we observe that when following the recursion 
until the node is the root of a bottom tree, it will be at an offset from the root of the top 
tree given by the size of the bottom trees and their output buffers times the number of 
bottom trees to the left of the child plus the size of the top tree. The number of bottom 
trees to the left is k mod (n+1), with n being the number of nodes in the top tree and k 
being a breadth-first-like index that is updated with kz+i, when going to the i’th child 
and k/z when going to a parent. The size of the bottom tree is kept is in a pre-computed 
table B as is the depth D of the root of the top and the number of nodes in the top tree N. 
These tables can be computed with one entry per level of the tree, since the recursion 
unfolds the same way for all nodes on the same level. The address of the nodes on the 
path from the root to the current node is kept in a table P, so address of the root of the 
top tree is P[D[d]] with d being the depth of the current node. The last ingredients is a 
table T with the size of the top tree. The address of the i’th child then becomes 

 [ ] [ ][ ] [ ]( )( ) [ ] [ ]( )mod 1P d P D d k N d B d T d= − + +  (5.1) 

We know that N[d] = (zj-1)/(z-1) for some integer j. With z = 2, we can thus compute 
k mod (N[d]+1) as k and N[d] which is likely to be faster. With the parameter z an integer 
template argument, we select the faster way through partial template specialization. For 
pooled layout, the modification lies in that buffer sizes should not be included in the 
offset from the root of the top tree. This in turn makes the table T identical to table N, 
so one of them can be discarded. For general z and z = 2 respectively, we get 

 [ ] [ ][ ] [ ]( )( ) [ ] [ ]( )mod 1P d P D d k T d B d T d= − + +  (5.2) 

 [ ] [ ][ ] [ ]( ) [ ] [ ]( )andP d P D d k T d B d T d= − +  (5.3) 

The relation in (5.3) is in turn what was used in [BFJ02] for navigating optimal 
cache-oblivious binary search trees. 

All implementations of navigators require storing multiple tables. This will make it, 
unlike iterators, infeasible to pass them as arguments to functions and in turn, 
unsuitable for use in recursive functions. Our implementation of fill is thus based on an 
unfolded recursion. Using the navigator abstraction and an unfolded recursion may 
increase the overall instruction count beyond what is possible using the simple 
recursive scheme of Algorithm 4-4. To clarify this, a recursive implementation was also 
made, however it requires the use of pointer flip nodes. 
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Non-power-of-z-funnels 
Before proceeding with the experiments with layout and navigation, a point about 
unbalanced trees need to be made. The problem is that if we want to merge zh+1 
streams, we may have to lay out a zh+1-funnel, which takes up a lot more space. It is 
indeed not necessary to lay out the entire zh+1-funnel, since some of it will not be used. 
Figure 5-6 shows how to conserve space by not constructing an entire funnel. 

 
Figure 5-6. A merge tree of order 16 and z = 3. 

However, not laying out a complete tree will foil all of the implicit navigation schemes 
described above, thus layout classes are asked to layout balanced trees when using 
implicit navigators. When using pooled layout, only the nodes of the balanced tree are 
laid out; the buffers are not. For the mixed van Emde Boas layout, however, we need to 
lay out a fully balanced funnel. When z becomes large, this may matter for certain 
values of k. 

Test Results 
For constructing funnels, we now have the choice between three layouts with two 
variants each, the choice of using the default allocator or using the stack_allocator, and 
the choice of using an implicit navigator or a general pointer_navigator or 
pointer_flip_navigator. This amounts to a total of 3⋅23 = 24 combinations, however, we 
cannot use implicit navigators with the default allocator, so a fourth of the 
combinations cannot be used. Furthermore, implicit navigators for mixed depth-first 
and mixed breadth-first have not been implemented. A total of ¾⋅24-2 = 16 
combinations remain. They are listed in Table 5-1. 
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Name Layout Allocator Node Navigator 
pb_heap_mveb Mixed van Emde Boas std::allocator Pointer flip Pointer flip 
pb_stack_mveb Mixed van Emde Boas stack_allocator Pointer Pointer 
impl_mveb Mixed van Emde Boas stack_allocator Simple Implicit 
pb_heap_veb Pooled van Emde Boas std::allocator Pointer flip Pointer flip 
pb_stack_veb Pooled van Emde Boas stack_allocator Pointer Pointer 
impl_veb Pooled van Emde Boas stack_allocator Flip Implicit 
pb_heap_mbf Mixed breadth-first std::allocator Pointer flip Pointer flip 
pb_stack_mbf Mixed breadth-first stack_allocator Pointer Pointer 
pb_heap_bf Pooled breadth-first std::allocator Pointer flip Pointer flip 
pb_stack_bf Pooled breadth-first stack_allocator Pointer Pointer 
impl_bf Pooled breadth-first stack_allocator Flip Implicit 
pb_heap_mdf Mixed depth-first std::allocator Pointer flip Pointer flip 
pb_stack_mdf Mixed depth-first stack_allocator Pointer Pointer 
pb_heap_df Pooled depth-first std::allocator Pointer flip Pointer flip 
pb_stack_mdf Pooled depth-first stack_allocator Pointer Pointer 
impl_df Pooled depth-first stack_allocator Flip Implicit 

Table 5-1. The possible combinations of layout and navigation available 
in our implementation 

The 12 non-implicit combinations are also implemented with pointer flip nodes 
using a pure recursive fill function. Their names have “pb” exchanged with “rec”. 

For the experiment, we have had each of the 24 funnels merge k streams of k2 
elements each using k-funnels with z = 2, α = 1 and d = 2 and k = 15, 25, … 270. The 
streams are formed by allocating an array of k3 pseudorandom elements (pairs of long 
and void*) and sorting sections of size k2 with std::sort. The funnel is constructed the 
streams attached, elements merged, and the merger reset 20,000,000/k3 times. The time 
measured is the time it takes to do this, save for the construction of the funnel. The 
output of the funnel is not stored anywhere; it is simply passed through an output 
iterator that checks whether the elements are sorted. 

To avoid having to display 24 data series in the same chart, the result of the 
experiment is presented as a tournament with a group of implicits, a group of pointer 
navigators using default allocator, one using stack_allocator, one recursive using default 
allocator, and finally one using stack_allocator. From each group we choose a winner to 
appear in the final chart. The result is as follows. First, let us look at implicit 
navigation. 
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Chart C-1. Implicit layout on Pentium 4. 

Pentium 3, 256/256
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Chart C-2. Implicit layout on Pentium 3. 

MIPS R10000, 1024/128
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Chart C-3. Implicit layout on MIPS 10000. 
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The charts are normalized to breadth-first layout, which on both the Pentium 3 and the 
MIPS architectures are clearly the worst performers, even though it has the smallest 
instruction count. The reason for this must be effects in the memory system. The 
measurements made by PAPI on the MIPS, indicates that it is not as much the L2 cache 
rather the TLB that makes the difference: 
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Chart C-4. Implicit layout on MIPS 10000, relative L2 cache misses. 
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Chart C-5. Implicit layout on MIPS 10000, relative TLB misses. 

The L2 cache incurs about the same number of misses regardless of layout, perhaps 
with the breadth-first incurring more misses; however, for large funnels (height at least 
six), we can see that some layouts are more “TLB friendly” than others are. TLB misses 
are handled in software on the MIPS so the performance penalty is greater. The 
breadth-first layout exhibits least locality as observed in [BFJ02]. The reason for this is 
that the parent is, except at the top, always located far from its children. All but the left 
most child are also placed far from the parent in depth-first layouts as well; however, 
for z = 2, that is half the children of a node, so it is not such a significant effect. 
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Navigating a pooled depth-first funnel requires us to update three variables when going 
from node to node. All three architectures are super-scalar, so these updates can occur 
in parallel and need thus not take any longer than just updating the breadth-first index. 

That the mixed van Emde Boas layout does not suffer from being forced to lay out 
balanced trees is also noteworthy. The fact that the buffers are not touched during the 
fill phase of the merge contributes to this. The best combination seems to be the pooled 
van Emde Boas Layout on all architectures. It has good locality and the navigation is 
not as complex as the mixed van Emde Boas layout, which may have even higher 
locality. Hence, we choose the pooled van Emde Boas Layout as the winner of this 
group. 

Let us now turn to the pointer-based navigators. When using the default allocator, 
none of the architectures seems to prefer any of the layouts particularly. As an example, 
the result from the Pentium 3 can be seen here: 
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Chart C-7. Layout using std::allocator on Pentium 3. 

We choose the depth-first layout for the final, because the Pentium 4 shows a slight 
(<1%) shift in its favor. The picture changes when using the stack_allocator: 
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Chart C-12. Layout using stack_allocator on Pentium 3. 
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Chart C-13. Layout using stack_allocator on MIPS 10000. 

The Pentium 3 (as well as the Pentium 4) clearly favors the pooled layouts, while the 
MIPS favors the mixed. There does not seem to be any special preference in the PAPI 
results. One explanation could lie in the lower level caches; when using pooled layouts, 
all the nodes can fit in L1 cache and if the associativity of the L1 cache is sufficiently 
high, they will likely stay there. However, if the cache has low associativity, it is likely 
that it cache lines with nodes on them will be evicted due to conflict misses during 
operations elsewhere in the funnel. In the latter case, it is probably best to store the 
nodes near the action. As it is, the Pentium 4 has a four-way set associative L1 cache 
while that of the MIPS is only two-way set associative. We choose in favor of the 
Pentiums and send the pooled depth-first layout to the final. 

When using the recursive implementation of fill, the Pentium 4 again has no 
preferences with less than 2% difference in performance. The Pentium 3, however, 
seem to prefer the pooled layouts not only with the stack_allocator, but also when using 
the default allocator: 
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Chart C-17. Recursive fill, heap, Pentium 3. 
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Chart C-22. Recursive fill, stack, Pentium 3. 

The MIPS fortunately seem to have lost its interest in the mixed layouts: 
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MIPS R10000, 1024/128
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Chart C-23. Recursive fill, stack, MIPS 10000. 

We choose the pooled van Emde Boas layouts for the final. Now that we have 
chosen a good layout from each of the groups, it is time to compare them to each other, 
now normalized to stack based layout with recursive navigation implementation. 
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Chart C-26. Final, Pentium 4. 
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Chart C-27. Final, Pentium 3. 
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Chart C-28. Final, MIPS 10000. 

We see that the Pentium 4 gains tremendously from using a recursive 
implementation of fill. This can be contributed to the number of transistors dedicated to 
avoiding control hazards. The Pentium 4 has a special return address stack, used by the 
fetch unit when returning from a function call. The stack contains the address of the 
next instruction to be fetched, which will then be ready immediately. When recursions 
are not too deep (as is the case here), this approach is far better than using conditional 
branches in the loops of the unrolled recursion. The effect is far from as pronounced on 
the Pentium 3 and the MIPS, where the effect is more likely due to overall lower 
instruction count. 

We can also see that the implicit navigation is competitive only when on equal 
terms, comparing to the pointer-based navigators. When comparing implicit with the 
recursive algorithm, the simple recursive approach performs much better. Moreover, it 
turns out that whether using controlled layout through stack_allocator or leaving it to the 
heap allocator does not make a significant difference. Indeed, MIPS tend to favor 
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memory delivered directly by the heap allocator. A reason for this is that the heap 
allocator is system specific and thus has detailed knowledge of the system parameters. 
This in turn allows it to allocate memory that is e.g. aligned on cache line boundaries. 

Conclusion 
In all, we conclude that the effects of the layout, and in turn the effects of cache, are 
dwarfed by other aspects. The key to achieving high performance in funnel 
implementations is through simplicity, rather than complex layouts. However, a good 
layout, such as depth-first or the van Emde Boas, seems to give a couple of percent on 
the performance scale. 

5.3.4 Basic Mergers 
By far the most time in a good funnel implementation should be spend merging 
elements. In our implementation, this means the basic mergers. Making sure they are 
performing optimally is thus important to achieving overall high performance. 

The body of the fill algorithm (page 48) essentially implements the basic_merger 
application operator. When calling add_stream on a basic_merger, if the stream is not 
empty a counter, named active, is incremented and the stream and the associated token 
is stored. If it is empty, it is simply ignored. Upon invocation, the basic merger will 
check active. If it is zero, it returns immediately. If it is one, the contents of the only 
stream are copied to the output. If the input got empty, we return its token; otherwise, 
we return the output token. If active is greater than one, the actual merging begins. The 
implementation of the merging is put in a member function named invoke. 

Binary Mergers 
There are a couple of subtleties concerning the use of basic mergers, which we will 
now discuss. The streams added to the basic merger is a part of the object state and are 
as such accessed through the this pointer. In general, this will cause a slight overhead 
every time we access them, which is a couple per element merged. However, 
basic_mergers are stack objects of the fill function, so in fill, the this pointer is a 
compiletime computable constant offset from the stack pointer. Provided the operator() 
is inlined into the fill function, this will also merely be a constant offset from the stack 
pointer, thus the member variables will act as if they are normal stack variables and can 
as such be accessed without having to dereference the this pointer. Nonetheless, even 
though we insist that the compiler should inline the functions, the speed is increased if 
we make local copies of the member variables. This must be contributed to poor code 
generation on behalf of the compiler. 

Another subtle issue that cannot be attributed to the compiler is the aliasing problem, 
that arises from passing the begin iterator of the output by reference. In such situations, 
the compiler cannot in general be certain that the iterator (which is often just a pointer) 
does not reference another iterator, in particular one of the input iterators. This in turn 
means it has to generate code that updates the referenced iterator and not just a local 
copy, each time the output iterator is updated. This turns writing elements to the output 
into a double dereferencing and incrementing the output begin iterator a load-
increment-store instead of just an increment. 

Since we know the output begin pointer is unique, and a reference to it does not 
reference any other pointer, we can solve this problem by explicitly making a local 
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copy of it, use that for merging, and write it to the referenced iterator before returning. 
The complete merging code implementing Algorithm 4-4 looks like this: 

template<class FwIt, class T, class Comp> 
inline Token invoke(FwIt& b, FwIt e, Token outtoken, Comp& comp) 
{ 
 typename Stream::pointer head[2] = 
  { stream[0]->begin(), stream[1]->begin() }; 
 typename Stream::pointer tail[2] = 
  { stream[0]->end(), stream[1]->end() }; 
 FwIt p = b; 
 while( p != e ) 
 { 
  if( comp(*head[0],*head[1]) ) 
  { 
   *p = *head[0], ++head[0], ++p; 
   if( head[0] == tail[0] ) 
   { 
    outtoken = token[0]; 
    break; 
   } 
  } 
  else 
  { 
   *p = *head[1], ++head[1], ++p; 
   if( head[1] == tail[1] ) 
   { 
    outtoken = token[1]; 
    break; 
   } 
  } 
 } 
 *stream[0] = Stream(head[0],stream[0]->end()); 
 *stream[1] = Stream(head[1],stream[1]->end()); 
 b = p; 
 return outtoken; 
}  

This basic merger implementation is called simple_merger. We see that each time a 
single element is merged in the funnel at least three conditional branches have to be 
evaluated, namely the branch in the while loop, the branch on which head is smaller, and 
the branch on whether the input got empty. This could be a major overhead. However, 
due to sophisticated branch prediction techniques, predictable branches need not cause 
any performance penalty. The test that branches on which head element is smaller is 
inherently unpredictable; however, we expect the loop branch and the branch on empty 
input to be more predictable. 

Consider a funnel with height power-of-two. No rounding is necessary when 
following the van Emde Boas recursion, so between every other level, there is a buffer 
of size αzd. With α = 1, z = 2, and d = 3, these buffers can contain eight elements. This 
means that at most eight elements can be merged before one of the two branches 
something different from the last time and cause a pipeline flush. This is not a lot. A 
quick fix would be to increase α, but this will not make the per merged element 
branches go away. We could also look at the problem more intelligently; since we 
know these branches will not fail (in the sense that they cause the loop to break) until 
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enough elements have been moved to either make the output full or on of the inputs 
empty. We can see that the number of elements will be at least the minimum of the 
number of elements in the input streams and the space available in the output. The 
adapted loop then looks like this: 

Diff min = e-p; 
if( tail[0]-head[0] < min ) 
 min = tail[0]-head[0]; 
if( tail[1]-head[1] < min ) 
 min = tail[1]-head[1]; 
do 
{ 
 assert( min ); 
 for( ; min; --min ) 
  if( comp(*head[0],*head[1]) ) 
   *p = *head[0], ++head[0], ++p; 
  else 
   *p = *head[1], ++head[1], ++p; 
 min = e-p; 
 if( tail[0]-head[0] < min ) 
  min = tail[0]-head[0]; 
 if( tail[1]-head[1] < min ) 
  min = tail[1]-head[1]; 
} 
while( min ); 

which we denote the two_merger. The benefit of this approach is that we have 
eliminated one of the branches from the core merge loop, but at the price of having to 
compute the minimum now and again. However, the minimum can be computed 
entirely without using branches, namely by using conditional move instructions, so the 
overhead should be small. A worst-case scenario would be an input buffer consisting of 
a single large element, the other input of many small elements, and plenty of space in 
the output. The single element would cause the minimum to be one and thus the 
minimum to be recomputed every time one of the small elements is moved to the 
output. 

To get a feel for how often such asymmetrical stream sizes occur, we counted the 
number of times the smallest input stream was a given fraction of the size of the largest 
stream. The resulting distribution can be seen in Figure 5-7. This was obtained through 
a full run of funnelsort on 0.7 million, 7 million, and 16.3 million uniformly distributed 
elements with α = 16 and d = 2.5. 
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Figure 5-7. The distribution of relative sizes of input streams of basic 

mergers. 

We can see that there is a slight tendency for the input streams to be of equal size; 
however, in general the small input stream can have a size any fraction of the size of 
the large input stream. Thus, we do not expect extremely small streams to be merged 
with very large streams with any significant frequency. 

Still, perhaps we can gain further performance if we used a merge function that took 
into account the fact that sometimes we need to merge smaller streams with large 
streams and do that more efficiently. [Knu98] includes a description of an algorithm 
(Algorithm H, Section 5.3.2) originally due to F. K. Hwang and S. Lin that achieves 
near-optimal number of comparisons on inputs of this type. The adaptation of it to the 
basic merger setting is slightly tricky so we leave it out and refer to the accompanying 
source, where it is implemented as the hl_merger. It has a significant overhead but it 
may be that it is outweighed by the frequency of asymmetrical stream sizes. From a 
theoretical perspective, this merger can decrease the total number of comparisons 
performed in the funnel. 

Realizing that the overhead of these more clever mergers may hamper their 
performance, we could also employ hybrid mergers; mergers that only use clever tricks 
under certain conditions. The hyb3 merger checks the relative size of the input streams. 
If the size of one stream is more than four times the size of the other, the hl_merger is 
used. Otherwise, the two_merger is used, but only as long as minimum is at least eight. 
From then on, it uses simple_merger. The hyb merger is a hybrid of only two_merger and 
simple_merger also with a cutoff at minimum of eight. The hyb0 only computes 
minimum once does one iteration of two_merger and proceeds with simple_merger. The 
reason this makes sense is that about half the times a basic merger is invoked, the 
minimum will be determined by the space available in the output, since on every other 
level of the funnel, the output buffer has a larger capacity than the input buffers. If that 
is the case, the minimum computed will be the exact number of elements moved during 
the entire merge. If it is not the case, we continue with simple_merger to minimize 
overhead. 

We performed the same benchmark as with the analysis of layout and navigation. 
Here we used the rec_heap_mveb and realizing that the choice of constants α and d can 
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be significant we ran the test for (α,d) = (1.0, 3.0), (4.0, 2.5), and (16.0, 1.5). With these 
parameters, the smallest buffers are of size 8, 23, and 45, respectively. The results for 
(α,d) = (1.0, 3.0) can be seen here: 
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Chart C-31. Basic mergers, (α,d) = (1,3), Pentium 4. 
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Chart C-32. Basic mergers, (α,d) = (1,3), Pentium 3. 
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Chart C-28. Basic mergers, (α,d) = (1,3), MIPS 10000. 

The MIPS produces a lot of noise (note the scale); however, it is clear that with a 
minimum buffer size of eight, not enough elements are merged per basic merger 
invocation to warrant the use of any method that has an overhead associated with it on 
any of the architectures. The overhead of the hl_merger made the entire merge take at 
least three times longer and is thus far off scale. In addition, the difference in all 
benchmarks between the hyb_merger and the hyb3_merger is minimal, implying that 
cases where the smaller stream has less than a forth the number of elements of the large 
stream are rare and that in those cases using the hl_merger neither improves nor worsens 
the performance. 

Going from (α,d) = (1.0, 3.0) to (4.0, 2.5) the two_merger does not gain much, but the 
hybrids start to get competitive at least on Pentium 3 and MIPS. Going to (16.0, 1.5), the 
Pentium 4 finally seems to benefit from the tighter inner loops of the hyb0_merger; 
however, using the pure two_merger still incurs a 35% running time increase. 
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Chart C-37. Basic mergers, (α,d) = (16,1.5), Pentium 4. 
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Chart C-38. Basic mergers, (α,d) = (16,1.5), Pentium 3. 

MIPS 10000, 1024/128
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Chart C-39. Basic mergers, (α,d) = (16,1.5), MIPS 10000. 

We conclude that the branch prediction unit of the Pentium 4 is very effective and 
that using any explicit intelligence to aid in avoiding slightly unpredictable branches 
will only hurt performance. The MIPS only has a six-stage pipeline, so any 
unpredictability in branches will not influence performance much. Still, it benefits from 
the tighter loop. Handling cases where the output buffer sets the limit on the number of 
elements merged in a special tight loop will improve average performance 3-5% 
percent on Pentium 3 and MIPS. Any more overhead and performance will get poorer. 

Higher Order Mergers 
Having established good ways to merge two streams, we are interested in extending the 
capability to merging of higher order and establish how that affects performance. 
[ACV+00] provides compelling evidence that merging with low orders can significantly 
increase performance; instead of using a traditional multiway mergesort, they restrict 
the sort to only use mergers of order no higher than some constant, instead of allowing 
the order to grow to M/B. This in turn will give them more passes, but the benefit of 
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using small mergers outweighs that cost. We are looking at the other end of the scale, 
comparing binary merge to higher order; never the less, we should see that performance 
increases, when increasing the order to a certain number. 

There can be at least two reasons for any increase in performance. One is, as 
[ACV+00] argues, that merging e.g. four or six streams can be done with all stream 
pointers stored in registers. The same is the case with merging two streams but with 
more streams, the registers are better utilized. This will not be the case on the Pentium 
machines, where only eight general purpose registers are available, barely enough to 
hold the pointers involved in merging two streams, however spilling the pointers to fast 
L1 cache may not be a performance problem. The second reason that performance 
would benefit is that we skip potentially expensive tree navigation operations; using 
four-way basic mergers is like using two-way basic mergers, except the edges 
containing the smallest buffers have collapsed. 

On the other hand, leaving two-way basic mergers also means leaving a compiletime 
knowledge of how many input streams a basic merger can have; using z-way basic 
mergers means we have to be able to handle merging of any number between two and z 
streams, since any of the z input streams may have become exhausted. 

Let us examine the ways in which we can implement z-way basic mergers. Recall 
that a basic_merger implementation keeps a member variable active counting the number 
of non-empty input streams. A simple for-loop based extension of the simple_merger 
could then look like this: 

template<class FwIt, class T, class Comp> 
inline Token invoke(FwIt& b, FwIt e, Token outtoken, Comp& comp) 
{ 
 struct ht { typename Stream::pointer h, t; } s[order]; 
 for( int i=0; i!=active; ++i ) 
  s[i].h = stream[i]->begin(), s[i].t = stream[i]->end(); 
 FwIt p = b; 
 assert( active > 1 ); 
 while( p != e ) 
 { 
  for( ht *m=s, *q=s+1; q!=s+active; ++q ) 
   if( comp(*q->h,*m->h) ) 
    m = q; 
  *p = *m->h, ++(m->h), ++p; 
  if( m->h == m->h ) // the input became empty 
  { 
   outtoken = token[m-s]; 
   break; 
  } 
 } 
 for( int i=0; i!=active; ++i ) 
  stream[i]->begin() = s[i].h, stream[i]->end() = s[i].t; 
 b = p; 
 return outtoken; 
}  

Pairs of head and tail pointers are kept in an array on the stack. A for-loop finds the 
pair m with the head pointing the smallest element. The element is moved to the output 
and the head pointer incremented. This implementation is called simple_for_merger. An 
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implementation that, like the two_merger, uses a tight loop merging a minimum number 
of elements before recomputing the minimum is also implemented as the for_merger. 

In the implementation above, each time we compare to find the smallest head, we do 
a double dereference. This can be alleviated by maintaining the value of the head along 
with the pair of pointers of that stream. However, this in turn means moving all 
elements to a temporary local variable, doubling the total number of elements moves. 
This could potentially be expensive when merging larger elements. for_val_merger and 
simple_for_val_merger has been implemented that are like for_merger and 
simple_for_merger, except they maintain a local copy of the head element. 

A problem with all of these solutions is the overhead of the for-loop. While the 
stream with the smallest head can be isolated using conditional moves, neither the 
compiler nor the processor at runtime have any idea of how many streams we need to 
consider. Instead, we could do a switch on active out side the loop. In the switch, we now 
know what active is. The implementation simple_comp_merger uses this information as a 
template argument that then picks out the smallest head. The templates are illustrated 
here: 

template<int active> 
inline bool move_min(It *head, It *tail, Token *tokens, It out) 
{ 
 if( *head[0] < *head[active-1] ) 
  return move_min<active-1>(head,tail,token); 
 else 
  return move_min<active-1>(head+1,tail+1,token+1); 
} 
template<> 
inline bool move_min<2>(It *head, It *tail, Token *tokens, It out) 
{ 
 if( *head[0] < *head[1] ) 
 { 
  *out = *head[0], ++head[0]; 
  return head[0] == tail[0]; 
 } 
 else 
 { 
  *out = *head[0], ++head[0]; 
  return head[0] == tail[0]; 
 } 
}  

and used like this: 

switch( active ) 
{ 
 case 2: 
  … 
 case 4: 
  for( p!=e; ++p ) 
   if( move_min<4>(head,tail,token,p) ) 
    break; 
  break; 
 case 5: 
  … 
}  
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In move_min<k> a comparison is made to see which of the first or the k-1st stream 
contains the larger element. That stream cannot contain the smallest element, so 
move_min<k> calls recursively on all but that particular stream. Provided the compiler 
inlines the entire recursion, this implementation will do exactly z comparisons per 
element merged in a z-way basic merger, and when they are done we know exactly 
where on the stack the pointer to the smallest element is. The problem is that the code is 
exponential in size and that none of the outcomes of the z comparisons are predictable 
nor can they be replaced by conditional moves. A version using minimum 
determination like the two_merger has also been implemented and is called comp_merger 

Instead of using sequential comparisons, we can also use optimal data structures 
such as heaps. The looser_merger is based on a looser tree that only does logz 
comparisons and moves [Knu98]. It too has been implemented using templates; when 
the looser has been located, we switch on the number of its associated stream. In this 
switch, we call a function specialized for that particular stream which then updates the 
looser tree. 

For the evaluation of the different implementations, we use them in a 120-funnel 
with (α,d) = (16.0, 2.0) to merge 1,728,000 elements. We do this eight times and 
measure the total time on a physical clock. For reference, we also include the binary 
basic mergers from the previous section. Here is the result: 
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Chart C-40. Basic mergers, Pentium 4. 
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Chart C-41. Basic mergers, Pentium 3. 
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Chart C-42. Basic mergers, MIPS 10000. 

Realizing compilers are not always eager to inline functions to the extend we need in 
the comp_merger and simple_comp_merger, we manually inlined a simple_comp_merger 
with z = 4. This is the four_merger. Since there is no discernible difference in 
performance between it and the simple_comp_merger, we conclude that the compiler 
does complete the inlining, at least for z = 4. 

The charts clearly show there is performance to be gained from increasing z; 
however, at some point the performance begins to deteriorate. The optimum value 
seems to be either 4 or 5. The overhead of using the optimal loser_merger is too great to 
use on these orders. For sufficiently large z, determining the minimum number of 
elements merged and merging them in a tight loop is faster than the naïve approach. 
This could indicate that it is the small buffers in the tree that largely contributes to the 
overhead of this approach. 

To some extent on MIPS but in particular on the Pentiums, it is hard to beat the 
handcrafted binary mergers. The reason for this is most likely the increased overhead of 
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making local copies of streams and iterating through them. Why the generalized 
simple_comp_merger takes such a performance hit when z = 2, compared to the 
simple_merger is not clear; the complier should inline the move_min<2> function and 
thus get a merge function identical to that of simple_comp_merger. As with the previous 
experiments, here too we must conclude that the simplest implementations are very 
good candidates to being the highest performer.  

5.4 Funnelsort 
Now that we have a high performing funnel in place, we will look into applying it in 
the algorithm for which it was designed. The algorithm as it is described in Algorithm 
4-5, page 55, does not leave as many options open to the implementation. The analysis 
requires it to be recursive so we cannot experiment with the structure of the algorithm. 
However, there is a base case for which we need to decide how to sort and there is the 
matter of how the output of the merging should be handled. Finally, there is the matter 
of the values of α and d. We will first look at how to handle the output and memory 
management, introduce two final optimizations, then look at buffer sizes, and finally 
settle on the base sorting algorithm. 

5.4.1 Workspace Recycling 
In multiway mergesort (Algorithm 3-3, page 39), runs were merged using complete 
scans; the entire file of elements were read in and a file containing the merged runs was 
written to disk. The subproblems are solved in a level-wise order, allowing the reading 
and writing of all elements from and to disk at each level. The reason this is optimal is 
that the number of levels in the recursion exactly fits with what is possible with the 
block and memory sizes, namely O(logM/B(N/B)). 

The number of recursions in funnelsort will be higher (O(loglogN)) so we cannot 
merge by scanning all elements. We have to follow the recursion and store the output of 
one recursive call before we recurse to the bottom of the next problem and we cannot 
simply keep a file for each level in the recursion. One simple solution would be to, for 
each recursive call, allocate a buffer the size of the subproblems in that call, around 
α1/dNd-1/d elements. Each recursive sort would then put their output into that buffer and 
when the recursive sort was done, the elements of the buffer would be copied back into 
the original array. In this approach, providing the output space for the mergesort is left 
to the caller, making the interface look essentially like the std::copy STL function: 

template<class Merger, class Splitter, class RanIt, class OutIt> 
OutIt mergesort(RanIt begin, RanIt end, OutIt out);  

The body would consist of allocating the temporary buffer and a number of recursive 
calls, each followed by a call to std::copy, to free the temporary buffer. 

The problem with this approach is that all elements are merged to a buffer and 
copied back. That is one more move per element than need be made. We can do better 
than that, observing that when we have made the first recursive call, all the elements 
from that subproblem are now in the temporary buffer. That leaves a “hole” in the 
original array just big enough to hold the output of the next recursive call. When all the 
recursive calls have completed, the hole have moved to the end of the array. We then 
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do the only move of elements, namely from the buffer to the end of the array. The 
process is illustrated in Figure 5-8. Using this procedure saves us a considerable N-
α1/dNd-1/d element moves. 

 
Figure 5-8. The merge procedure used in funnelsort. The thick arrows 

indicate sorting output while the thin arrow indicates a move. 

In each recursive call, we need the temporary buffer and a k-funnel, but not both at 
the same time. Using the stack_allocator, described in Section 5.3.2, we can first 
compute which of the two takes up most space, construct a stack_allocator large enough 
to hold either of them, allocate the buffer, sort recursively, move the buffer elements 
back into the array, deallocate the buffer, and then layout the funnel using that 
allocator. This way, the funnel is laid out in exactly the memory locations the 
temporary buffer occupied. Recycling the workspace like this, will likely mean that the 
funnel is already in cache when it is needed. 

5.4.2 Merger Caching 
As with any function, at each recursive call a new set of local variables are allocated 
and constructed on the execution stack. This is normally not much of a performance 
issue, but if one of those variables is a funnel, having to allocate and construct it at each 
recursive call may soon become a performance issue. 

In fact, constructing a new funnel at each recursive call is far from necessary. In all 
calls at the same level of recursion, we use a funnel of the same order, so instead of 
using a funnel local to the merge_sort function, we start out by simulating the recursive 
calls of the merge_sort function and at each level noting the order of the funnel needed. 
A funnel is then allocated for each level and they are in turn used in the recursive calls. 
For the simulation, we are only interested in the levels of the recursion and so could do 
with a single tail-recursive call, easily converted to a loop. 

Using this scheme, we can only apply workspace recycling at the root of the 
recursion, but since that will dominate the rest of the recursion, both in workspace 
consumption and memory transfers, this will also be where we gain the most. 

We have implemented the funnelsort algorithm both with and without merger 
caching to asses whether pre-computing the total space needed throughout the 
algorithm will be a considerable overhead, or constructing a new funnel in each call 
will hurt performance. The premise of using workspace recycling was that the funnel 
used the same stack based allocator as used to allocate the temporary buffer. However, 
since we deallocate the buffer just before we start allocating the funnel, using a heap 
allocator could achieve the same effect, if the allocator chooses to allocate from the 
newly freed area. At the same time, using a heap allocator may be slower than the 
stack_allocator, due to the complexity of managing a general heap, thus shifting the 
performance in favor of using merger caching. 
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We have tested the two versions of funnelsort with both a stack_allocator and a heap 
allocator. For this test we use α = 4, d = 2.5, and the simple_merger basic merger (z = 2). 
We use the std::sort provided with STL to sort subarrays smaller than αzd = 23. We sort 
uniformly distributed pairs. The result is as follows: 
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Chart C-43. Effects of merger caching, Pentium 4. 

Pentium 3, 256/256
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Chart C-44. Effects of merger caching, Pentium 3. 
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MIPS 10000, 1024/128
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Chart C-45. Effects of merger caching, MIPS 10000. 

We saw in Sections 5.3.2 and 0 that the different architectures preferred different 
allocators. We see the same picture here. We do however see a more consistent picture 
here; all architectures clearly prefer the mergers to be cached. We suspect that this is 
mostly due to avoiding the computational overhead of constructing mergers in each 
recursive call. There is only slight evidence of savings due to increased locality, by 
recycling workspace and using std::allocator, as can be seen here in the number of TLB 
misses: 
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Chart C-47. Effects of merger caching, MIPS 10000, TLB misses. 

The effect of reusing mergers is dwarfed by the effect of using stack_allocator. As 
discussed, using the stack_allocator allows us to reuse the temporary buffer for laying 
out the funnel. When we recycle the workspace like this, we effectively recycle virtual 
memory addresses, in turn keeping the translation look-aside buffer entries alive longer. 
This reduction in TLB misses does not affect the overall execution time significantly, 
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however. We should use both merger caching and controlled allocation to reduce the 
construction overhead and increase overall locality. 

5.4.3 Base Sorting Algorithms 
As an improvement to quicksort, Sedgewick introduced the idea of not completing the 
quicksort recursion, but stop before problem sizes got too small [Sed78]. This would 
leave the elements only partially sorted. To sort it fully, insertion sort was used in a 
final pass. What made it efficient was the special property of insertion sort, that if no 
element is more than c places from where is should be in the sorted sequence, insertion 
sort can sort all n element using no more than O(cn) moves and comparisons [Knu98]. 
Ladner and LaMarca have since proposed that the insertion sort should be done at the 
bottom of the recursion rather than as a final pass, since a final pass would incur N/B 
additional memory transfers [LL99]. As a side effect, the special property of insertion 
sort is no longer needed; any low instruction count sorting algorithm can be used. 

With funnelsort, we are faced with a similar situation – below a certain problem size, 
we have to switch to a different sorting algorithm, simply because no funnel can merge 
such small streams. We choose to switch to another algorithm when problem sizes 
becomes smaller than αzd, because that in turn will make funnelsort choose at least a 
z+1-funnel, that is a funnel of greater than one height, on all inputs sorted by funnelsort. 
This avoids the need to handle the special case, where the root of a funnel is also a leaf. 

The choice of sorting algorithm for the base is not clear. Insertion sort as proposed 
by Sedgewick performs O(n2) moves in the worst case; however, it performs much 
better when applied to data that is almost sorted. Indeed, it naturally detects completely 
sorted sequences with only O(n) comparisons and uses no moves at all. A very low-
overhead alternative to insertion sort is selection sort [Knu98, Algorithm S]. A 
compelling feature of selection sort is that for each position in the sequence, the correct 
element is located and then moved there; it only moves an element once. However, it 
does O(n2) comparisons even in the best case. 

The limitation of insertion sort is that most elements are never moved more than one 
position. Shell sort attempts to remedy this by doing several passes of insertion sort, 
first only on elements far apart, then on elements closer and closer to each other 
[Knu98, Algorithm D]. It has a higher overhead but will asymptotically perform fewer 
operations per element. Considering that modern processors are super-scalar and 
capable of executing several instructions in parallel, it is only natural to investigate 
sorting algorithms that are not inherently sequential. One such algorithm is Batcher’s 
merge sort [Knu98, Algorithm M]. Similar to Shell sort, Batcher’s sort uses several 
passes, each sorting elements closer and closer together. The difference is that the 
sequence of comparisons in Batcher’s sort is such that they can be executed in parallel. 
Modern processors may be able to detect and exploit this. The downside is that 
computing the sequence gives this algorithm a considerable overhead. Heapsort is a 
special kind of selection sort, where each element is selected in O(logn) moves and 
comparisons, making it an asymptotically optimal sorting algorithm. 

These algorithms were implemented and run on small arrays of uniformly 
distributed random pairs. We measure the wall clock time it takes to sort a total of 4,096 
such pairs. For this test, we had the unique opportunity to run on an Intel Itanium 2-
based computer. The Itanium class of processors uses so-called explicit parallelism. 
This means that when the compiler issues instructions, it will bundle them in 
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instructions capable of being executed in parallel. This is opposed to RISC and CISC 
architectures, where instructions are emitted by the compiler as sequential as they 
should be executed and the compiler is not concerned with what instructions can be 
executed in parallel. It will then attempt to extract any parallelism. Another side of the 
Itanium architecture is the heavy use of conditional execution; all instructions can be 
executed conditionally and on any of 128 predication bits. The results are as follows: 

Pentium 4, 512/512

0 s

1 s

2 s

3 s

4 s

5 s

6 s

7 s

10 20 30 40 50 60 70

Elements

W
al

l c
lo

ck
 ti

m
e

insertion
selection
heap
shell
batcher's
stdsort

 
Chart C-48. Base sorting algorithms, Pentium 4. 

Pentium 3, 256/256
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Chart C-49. Base sorting algorithms, Pentium 3. 
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MIPS 10000, 1024/128
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Chart C-50. Base sorting algorithms, MIPS 10000. 
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Chart C-51. Base sorting algorithms, Itanium 2. 

For the test on the Itanium, we used the Intel C++ compiler version 7. This compiler 
comes with the Dinkumware implementation of the STL. This particular 
implementation features an std::sort function that like the SGI implementation is based 
on introsort. However, for the partitioning, a more robust function is used than in the 
SGI implementation. This function does a so-called Dutch flag partition, collecting 
elements that are equal to the partition element between the two partitions. 
Furthermore, it uses a sophisticated rotate function in the implementation of insertion 
sort used in the bottom of introsort. In all, while it makes the implementation faster on 
certain inputs, it clearly makes it slower on the sets we tested. The switch to insertion 
sort is std::sort can clearly be seen. In the SGI implementation (perhaps most clear on 
the Pentium 3 results) the switch happens at 16 elements, while in Dinkumware, it 
happens at 32 elements. Sedgewick originally suggested a switch around 9 or 10 
elements; however, we see here that insertion sort remains competitive at least up in the 
20’s, even 40’s on the Pentium 4, at least when sorting uniformly distributed pairs. 
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Selection sort is apparently too hampered by its best-case O(n2) comparison count to 
be competitive. Comparing selection sort to insertion sort, we can see that insertion sort 
is indeed significantly faster than its O(n2) worst-case time. Eventually, however, 
insertion sort will loose to all but selection sort. The optimal heapsort is quite 
competitive on all architectures and most problem sizes, while some architectures 
prefer Shell sort more than others. 

Most interesting is perhaps Batcher’s sort. On Pentium 3 and MIPS, its performance 
is in the mid-range, for the most part performing worse than Shell sort does. However, 
on Pentium 4, it performs better than Shell sort performs and is even able to keep up 
with heapsort. On the Itanium, however, it outperforms all other algorithms, being 
almost twice as fast as heapsort. This indicates that as processor performance get more 
and more dependant on instruction level parallelism, more and more performance can 
be gained when using sorting algorithm that allow for such parallelism. 

As suspected, at least on the more traditional architectures, no algorithm can beat the 
hybrid and highly optimized approach of introsort. 

5.4.4 Buffer Sizes 
Finally, the implementation details of the complete funnelsort are in place. Without 
further ado, here are the results of sorting using funnelsort with different values of α 
and d: 
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Chart C-55. Buffer parameters, sorting 16,000,000 elements on Pentium 3.  
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Chart C-58. Buffer parameters, sorting 3,700,000 elements on MIPS. 

The test was conducted for three different array sizes on each machine, all of which 
fit in main memory. As suspected, when decreasing the values of α and d, fewer 
elements are merged per call to fill, and the overhead of navigating the tree and 
managing buffers become significant. With α > 4 and d ≥ 2, we can see that this 
overhead is virtually gone. Maximal performance is reached around α = 16 and d = 2.5. 

Choosing α and d is not as simple as the above two charts imply, however. The 
choice of values influences both the order of the funnel used and the space needed to 
hold it. To expose these effects, one of the array sizes were chosen close to what can fit 
in RAM. The results are as follows: 
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Chart C-57. Buffer parameters, sorting 26,000,000 elements on Pentium 3. 
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Chart C-59. Buffer parameters, sorting 5,100,000 elements on MIPS. 

Two effects are dominating. One, if we choose d small, we will need a very high 
order funnel, and since d > 1, the total space consumed by its buffers are super linear. 
The total space needed for the algorithm then becomes too much to fit in memory. On 
the other hand, when the values of α and d are increased, the funnel it self will require 
more space and even though a lower order funnel is used, the size of the funnel is again 
too much for it to fit in RAM. 

For any choice of values of α and d, the algorithm will require space for the funnel 
and for some array size this particular choice will make the total space requirements of 
the algorithm too high for it to fit in cache. The point is that we should avoid extreme 
values of α and d, since it will cause extreme space requirements of the funnel; it may 
be tempting to choose high values of α and d to minimize the overhead; however, doing 
so may cause the algorithm to incur memory transfers on smaller arrays than had we 
chosen more sensible α and d. 

5.5 LOWSCOSA 
The primary components of the LOWSCOSA are partitioning and merging with 
funnels. With a high performance funnel, already in place this leaves partitioning, 
which we will look at in this section. At the end of the section, we will briefly discuss 
what performance to expect from the LOWSOSA. 

5.5.1 Partitioning 
Partitioning elements of an array consists of two phases: median finding and 
partitioning. The partitioning phase uses the median as a pivot element and during a 
single scan moves elements that are larger than the pivot to one side and elements that 
are smaller to the other side. The exact median can also be found in linear time 
[BFP+73]. 

For algorithms like quicksort, we are not required to partition into two equally large 
partitions. For those algorithms, we thus do not have to use the exact median as the 
pivot; we can make due with an approximate median. Such a median can be computed 
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as the exact median of a small sample of elements instead of all elements. Popular 
sample sizes for quicksort are three and nine [Knu98], even n  [MR01]. The effects 
of this is that virtually no time is spend finding the median and thus only the 
partitioning contributes to the linear term in the complexity. A downside is that we risk 
making uneven partitions where one part not much smaller than the original array. This 
can mean that the time spent partitioning is largely wasted. In quicksort, however, even 
with a sample size of one, that is we use a predetermined element as the approximate 
median, on uniformly distributed elements the expected running time is only a small 
constant larger than what could be achieved if we new the exact median in advance 
[Knu98]. 

In the interest of performance, we would like to use an approximate median for the 
LOWSCOSA also. The consequences of the resulting uneven partitions are however 
not as trivial as in the case of quicksort. If we partition such that there are more small 
elements than large elements, the output of the merger cannot fit in the space originally 
occupied by the large elements (see Figure 4-3, page 58). This is a design problem in 
the algorithm that needs to either be solved or avoided. This means that we cannot hope 
to generate more sorted elements than there are elements in the smaller of the two 
partitions at each iteration of the LOWSCOSA. Furthermore, if we go ahead, sort the 
large number of small elements for the input to the funnel, and only output a small 
number, we have wasted a considerable time sorting them. 

5.5.2 Strategy for Handling Uneven Partitions 
Before we look at how to handle the case of an uneven partition, we make the following 
observation. It is possible to combine the partition phase with the sorting of the 
subarrays to be merged in the current call; during the partitioning, when we have 
moved a sufficiently number of small elements to the end of the array, we put the 
partition on hold and sort them. This way, when these subarrays are small enough to fit 
in cache, we can complete the partition phase and the following sorting phase incurring 
only N/B memory transfers instead of up to 3N/(2B). We consider this an important 
optimization in the interest of increasing locality and cache usage. 

Repartition 
The simplest strategy is perhaps to perform the partition using the approximate median. 
When that is done, if more than half the elements we partitioned as smaller than the 
median, we simply pick a new median and partition again. An improvement is to only 
partition the small elements. This will take less time and more likely generate a 
partitioning with fewer small elements than large. 

However, this approach makes it infeasible to sort streams while partitioning, 
because we risk having to repartition and thus make the sorting a wasted effort. In 
addition, we would expect every other partition to generate more small elements than 
large, so repeating the partitioning every time that happens will generate a considerable 
overhead. 

Abort on Empty Refiller 
Instead of repartitioning, thus avoiding the problem of outputting too many elements, 
we can continue with the uneven partition and handle the problem explicitly. The 
problem can be solved by giving the refiller a way to abort the merging. It would then 
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do so just before it begins reading into the part containing small elements. The situation 
is depicted in Figure 5-9. This will leave a “hole” in the input between the output and 
the refiller. The hole is patched with the elements contained in the funnel and included 
in the recursive call. 

 
Figure 5-9. The refiller has no more large elements. 

This scheme avoids a second partitioning and allows us to sort the input streams 
during the partitioning; however, it is flawed in the case of extremely few large 
elements. In these cases, the buffers in the funnel will not be filled and not a single 
element output. The refiller reads in all large elements before a single element is output 
from the funnel. In these extreme cases, we would have to fall back on the 
repartitioning scheme or employ some other special-case handling scheme. 

Abort on Full Output 
To remedy the fault, we may continue the merging until we have filled the left side of 
the array with small elements. To avoid the refiller starting to read in parts of the sorted 
streams, potentially duplicating elements, we need to detach it from the funnel. We 
have to keep the input streams attached so the funnel keeps reading the small elements. 
When the output has filled the left side, some elements are both in the input streams 
(the space they occupied was not refilled) and in either the funnel or in the output. In 
essence, the hole from the previous scheme is now scattered in all the input streams. 
Like before, we fill these holes with the elements remaining in the funnel. 

Merge Big Elements 
Perhaps the most elegant approach is to make input streams of the elements in then 
smallest of the partitions, not necessarily of the small elements. If the smallest of the 
partitions contain large elements, we use a funnel that outputs large elements first and 
writes them from the end of the array to the beginning. The process is illustrated in 
Figure 5-10. Note that the output and input of the funnel is now written and read in 
reverse direction. 
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Figure 5-10. The process of multiway merging when there are more small 

elements than large element after the partition. 

In our implementation, we have chosen to detach the refiller when it hits the small 
elements and to sort the streams while partitioning. This means that if we do an uneven 
partition, we may have sorted streams containing many more elements than the number 
of elements sorted by the end of an iteration. To reduce the risk of that happening, we 
have increased the sample size to 31 elements. We sort this sample and use the 17th 
smallest as the partition. Using a larger element than the 15th smallest reduces the risk 
of partitioning more small elements than large elements. 

5.5.3 Performance Expectation. 
When looking at the virtual memory level of the memory hierarchy, we have argued 
that for all sensible input sizes neither multiway mergesort nor funnelsort will do more 
than 4N/B memory transfers. The LOWSCOSA will unfortunately do more than that. 

Under the assumption that an entire input stream of the funnel can fit in memory, the 
partitioning and sorting of input streams can cause up to 2N/B. The funnel will read in 
and write out half the elements for a total of N/B memory transfers. However, by now 
only half the elements are sorted, assuming partition into equally many large and small 
elements. The algorithm will continue on arrays of geometrically decreasing sizes, 
effectively doubling the the number of memory transfers. The total number of memory 
transfers will be largely dominated by those incurred at the first iterations, so when N is 
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significantly larger than M, the fact that the last logM iterations can be performed 
without incurring memory transfers has little influence. 

Thus, the total number of memory transfers incurred under these assumptions could 
be as high as 6N/B. With an input occupying 2GB and half a gigabyte of RAM, the first 
two iterations incur the full number of memory transfers, while after the partitioning 
phase of the third iteration the rest of the algorithm activity is within RAM. This gives a 
total of (3+(3/2)+2/4)N/B = 5N/B memory transfers, only slightly less than quicksort on 
the same input size and under more realistic assumptions (see Section 3.2.4). 

In addition to added memory transfers, the LOWSCOSA also has an increased 
instruction count; each time an element is read into the funnel, another element is 
moved in its place. This will, in turn, almost double the total number of element moves 
performed. The number of comparisons is also increased, since before an element is in 
its right place, it has participated in a partitioning and a merge, as well as the recursive 
sorts. Furthermore, the LOWSCOSA requires O(logn) funnels to be constructed as 
opposed to funnelsort requiring O(loglogn) funnels. 

In all, the expectation of the performance of the LOWSCOSA does not look good. It 
is however optimal in the cache-oblivious model and the fact that it requires low order 
working space is for us reason enough to investigate its performance. 


