
 61

Chapter 5

Engineering the Algorithms

Having presented the algorithms in a theoretical setting, it is now time to start looking
at them from a practical perspective. In this chapter, we do a thorough investigation of
what can be done to maximize performance of the algorithms presented in the previous
chapter.

We will look into the design choices left open in the previous chapter and fill in the
details while following a path leading to an implementation of high performance. In
mergesort algorithms, in general we cannot avoid doing NlogN comparisons and 4N/B
I/Os. The mergesort algorithms we investigate also achieve this, so maximizing
performance largely amounts to minimizing overhead. In this chapter, we will focus on
possible approaches to minimizing overhead and evaluate these approaches through
experimental analysis.

In the next chapter, we will compare our implementation to that of other algorithms.
For that, it is important to ensure we have a reasonable efficient implementation
[Joh01]. The results presented in this chapter provide knowledge of what combination
of parameters and algorithmic details yield fast algorithms and data structures. This
knowledge is then combined into optimized cache-oblivious sorting algorithms, the
performance of which will be evaluated in the next chapter.

We begin this chapter with a section with general considerations on how we evaluate
performance of algorithms. The remaining chapter is then dedicated to the
implementation of the algorithms. In Section 5.2, we provide an overview of the
structure of and the pieces that make up the implementation. In Section 5.3, we look
into aspects of the funnel data structure. Of particular interest in this section is how to
manage the data structure and how to implement a high performing fill algorithm.
Section 5.3.4 focuses on the funnelsort algorithm. We provide a few optimizations and
investigate good parameters for determining subproblem sizes and buffer sizes of the
funnel. Section 5.3.4 provides a discussion on implementation details of the
LOWSCOSA.

5.1 Measuring Performance
The focus of this and the next chapter will be on performance evaluation. Before
presenting any benchmarks, we want to make clear exactly what it is we will be
showing. The following is an overview of how the benchmarks, presented in both this
and the next chapter, are conducted.

62 Chapter 5
Engineering the Algorithms 5.1.1

5.1.1 Programming Language
For portability and more importantly genericity, the algorithms are implemented in a
generic high-level language. The language chosen is C++ [C++98]. The primary reason
for this is that it allows for producing high performing code, while implementing
generic algorithms. C++ was designed to have optimal run-time efficiency; depending
on compiler quality, abstraction penalties are minimal. In addition, the accompanying
library, the Standard Template Library (STL), contains a highly optimized sorting
function, named std::sort, with which we may compare the algorithms developed here.

5.1.2 Benchmark Platforms
The underlying platforms for the benchmarks have been chosen based on diversity and
availability. As discussed in Chapter 2, different processors and operating systems
behave and perform different under certain circumstances. It is thus important to cover
as many types of processors as possible, when arguing that the design choices made
will be sound on not one but many different architectures. Our implementation would
only be compelling to people using one particular platform, were we only able to show
high performance on that type of platform.

We feel it is important to benchmark in real world scenarios and have thus chosen
not to use simulation tools and to use the memory subsystem as is; we will not reduce
the memory available to our algorithms artificially. The fact that modern computers
now come with at least half a gigabyte RAM makes results obtained on machines
artificially restricted to 32 or 64 MB of RAM of no practical relevance.

Hardware
Benchmarks made on three radically different architectures to ensure that we do not
accidentally tune the algorithms for a specific architecture, thus defying one of the
design goals of cache-oblivious algorithms. The architectures are Pentium 3, Pentium 4
and MIPS 10000 based. Their specifications can be found in Appendix B.

The Pentium 3 platform represents the traditional modern CISC. It has a pipelined,
out-of-order, and super-scalar core. Its pipeline is as short (12 stages) as seem sensible
when designing CISCs. The Pentium 2 and the AMD Athlon both have designs similar
to the Pentium 3 and is thus expected to perform comparatively. The Pentium 4
computers represent a significant change in design philosophy. They signify a departure
from the ideal of keeping pipelines short to minimize the cost of pipeline hazards and
feature a 20-stage pipeline. This means that a branch miss-predict may waste as much
as 20 clock cycles. The benefit of the long pipeline is very high clock rates. In
applications such as sorting, where unpredictable conditional branches are
commonplace, a 20-stage pipeline may well cause performance to degrade despite the
high clock rate. To counteract the performance loss due to branch miss-predicts, the
Pentium 4 employs the most sophisticated branch prediction logic of the three
processors. Whether it will help it in the context of sorting remains to be seen.

To represent the RISC family of processors, we include a MIPS 10000 based
computer. It has a traditional 6-stage pipeline and the simplicity of the core has made
the inclusion of a large 1MB L2 cache possible. A notable feature of this processor is
its ability to use an address space larger than 232 bytes. Its word size is 64 bits both
when used as address operation operands, and in the ALU. It is a relatively old

 63
5.1.3 Data Types

processor and it is significantly slower than the Pentiums, so unfortunately due to time
constraints, it could not participate in all benchmarks, though we have included it in all
benchmarks presented in this chapter to guarantee that our implementation is not
optimized for the Pentiums alone.

We feel that these three platforms are representative of most computers in use today
in that most processors in use to day have a design resembling one of these three CPUs.

Software
On the software side, the Pentium computers are running the Linux operating system
and the MIPS computers are running the IRIX operating system. The primary
development platform, however, has been Windows. We feel that this has also
contributed to diversifying the code.

The compilers used are listed in Appendix B. All executables used to generate
benchmark results were compiled using the GNU Compiler Collection (GCC), which is
the only one available on all platforms used. This was done to ensure that no algorithm
had the benefit or detriment of good or poor code generation from the compiler, on any
of the platforms. Say, for example, the MIPS Pro compiler is very good at generating
code for funnelsort and not for std::sort. This would then put aspects of std::sort in a
particular bad light, but only on the IRIX platform. We have found that for our
experiments, the GCC generates code that is at least as good as any of the other
compilers used generates. If anything, it generates very fast code for the quicksort
implementation included in the standard library. The code generated by the MIPS Pro
compiler was of equal quality, but both the Intel and Microsoft compilers generated
significantly slower code.

5.1.3 Data Types
Sorting is used in a wide variety of applications. It is important that our benchmarks
closely reflect as many applications as possible [Joh01]. Recent efforts in developing in
particular cache-efficient sorting algorithms have opted to evaluate the performance
sorting elements consisting only of a single integer key ([LL99], [XZK00], and
[ACV+00]). We feel, however, that sorting only integers is of limited applicability;
some sort of information should be associated with the integers. At the very least, a
pointer to some structure should accompany the integer. This may have an impact on
algorithms that move elements a lot.

Inspired by the Datamation Benchmark, in turn inspired by sorting problems
encountered in the database community, we have included a type of size 100 bytes
[DB03]. The problem in the Datamation Benchmark originally consisted of sorting one
million such records. This has since proved too easy and the total time became
dominated by startup time. In response, the problem was changed to that of sorting as
many records in one minute. This is known as the Minute Sort Benchmark. Since there
are no restrictions on the platforms used when performing the benchmark, these
benchmarks are largely a test of hardware and operating system I/O subsystems, rather
than algorithm implementation. To allow contenders with limited finances to compete,
the Penny Sort Benchmark was introduced. This benchmark is essentially the Minute
Sort Benchmark with the result scaled by the price of the platform used in dollars.
Algorithms competing in this benchmark are however still designed to be fast on one
specific platform.

64 Chapter 5
Engineering the Algorithms 5.1.4

For our benchmarks, we choose to look at these three data types:

▪ Integers. This data type is simply a long.
▪ pairs. These represent key-value pairs and are implemented as class with data

members of type long and void*. Their relative order is based on the value of the
long.

▪ records. Represents database records or equivalents. They are implemented a class
with a data member of type char[100]. Their relative order is determined by the
strncmp function of the C standard library, such that the entire record is also the
key.

Note that on the MIPS machine, both long and void* are 64-bit, while they are 32-bit
on the Pentiums.

It would be infeasible to conduct the entire study in this chapter with several
different data types. Thus in this chapter we will only use pairs. We then risk optimizing
for relatively small data types. We will be weary of this when it comes to choosing
between implementations that favor small elements, and then evaluate the performance
of our implementation used on all three data types in the next chapter.

For the same reason, in this chapter, we limit the experiments to uniformly
distributed random data. In addition, we do not want to optimize for any special case
distribution, and since some results could be highly dependant on the distribution of
elements and our algorithm implementation should not favor any distribution, we
conduct the experiment on uniformly distributed pairs.

To generate random keys, we use the drand48 function available on both Linux and
IRIX. In Windows, we use the rand function of the C standard library.

5.1.4 Performance Metrics
We may measure performance of our implementations by several ways. Here we bring
an overview of the metrics used in this thesis.

Running Time
Of absolute primary concern is the total time spending solving the problem (sorting,
merging, or other) measured on a physical clock. This measure is an indication of how
long one would wait for the problem to be solved, which we believe to be of primary
concern to the user of our algorithms.

As an alternative to the wall clock time, one may use the CPU time. That is the total
time the algorithm is actually running on the processor. This measure is important if we
were to estimate how much the processor would be occupied by the solving the
problem. This could be of concern when other processes need access to the CPU.
However, our implementation will not be designed with multiprocessing in mind.
Furthermore, measuring the CPU time does not take the time the algorithm spends
waiting for a page fault into account, because during this time, it is not scheduled on the
CPU. Thus, we will not consider CPU time for our benchmarks.

The wall clock time is determined using the gettimeofday C library function. In Linux
and IRIX, it appears to have a precision in the order of microseconds. In Windows, it
appears to have a precision of milliseconds only, so we use the high-resolution

 65
5.1.5 Validity

performance counter available through the QueryPerformanceCounter API. This appears
to have a precision of a couple of nanoseconds.

Page Faults
Albeit not of primary concern, the number of page faults incurred running the algorithm
may provide us with important insights into the behavior of the total running time of the
algorithm.

In the next chapter, when sorting large data sets, we will thus also present the
number of page faults incurred by the algorithms. For this, we use the get_rusage system
call in Linux and IRIX. This call provides both the number of minor and major page
faults. Since only the major page faults have significant impact on performance, on that
number will be reported. In Windows, we assign a job object to the process and use the
QueryInformationJobObject API.

Cache and TLB misses
Aside from the number of page faults, the number of cache and TLB misses also
influence performance. Performance Application Programming Interface (PAPI) allows
for monitoring hardware counters [PAPI03]. Hardware counters can keep track of
cache misses, TLB misses, and similar hardware events. PAPI is a cross-platform
software library that provides access to these counters. Unfortunately, to make the
Linux version work, a patch has to be applied to the kernel and we did not have that
privilege for our test machines.

No patch was needed for the IRIX version, however, so we can use PAPI on the
MIPS machine to show the cache behavior of the algorithms. We will be measuring the
number of L2 cache misses (the PAPI_L2_DCM event) and TLB misses (PAPI_TLB_TL).

5.1.5 Validity
To provide valid and relevant experimental analysis, we should attempt to even out any
disturbances in the results due to effects external to the algorithm, such as the
scheduling of other processes running on the system. This may be achieved through
more or less elaborate ways of averaging results from multiple runs of the same
algorithm on the same problem.

In this thesis, however, we deal with such massive data sets, that individual
benchmark runs take several minuets, sometimes even several hours. In comparison,
any anomalies due to process scheduling or other operating system operations often
cause no more than in the order of milliseconds of delays in the running time, so we do
not expect this to influence our results greatly. Periodic scheduling of other processes
may interfere significantly with the result of the benchmark. However, such
interference is only normal in modern multiprocessing environments.

Primarily for time considerations, we choose to run each benchmark only once. This
means that sudden “jumps” in measurements may be present in the results. However,
we will attempt to run them with as many different parameters as feasible, to expose
any systematic behavior of interest, and to expose what may be irregularities and what
reflects actual algorithm performance.

66 Chapter 5
Engineering the Algorithms 5.1.6

5.1.6 Presenting the Results
A vast number of benchmarks have been run. Not all of them present new and relevant
information. To avoid cluttering the discussion in the present chapter, the results of all
benchmark are included in Appendix C and in electronic form as described in Appendix
A, and only the ones that present relevant information will be included in the text. For
the rest of the results, we thus refer to Appendix A. The results are presented in Charts
and their number in the appendix corresponds to their number in this chapter. The titles
of the charts are consistently titled <processor>, <cache size>/<RAM size> with <…>
substituted with values of the machine they were run.

The engineering effort carried out in this chapter is intended to compare different
approaches to solving the same basic problems; they should not be viewed as
performance evaluations of the individual implementations. Thus, when comparing an
algorithm using method A with B and C, we prefer to show the performance of method
B and C relative to A. This is done to emphasize what is the focus of this chapter,
namely identifying approaches to implementing the algorithms that maximize
performance. A more absolute performance analysis is carried out in the next chapter,
when we have found the best way to implement the algorithms.

For each benchmark, we discuss exactly which part of the algorithm we will be
analyzing. Each benchmark is accompanied by a discussion of the results, relating them
to design choices made. Based on this we draw conclusion on what choices result in
efficient implementation solving the problem.

5.1.7 Engineering Effort Evaluation
The engineering effort presented in this chapter seeks to find a good way to implement
the algorithms. To do this, a series of questions need to be answered, such as

▪ How should the funnel be laid out in memory?
▪ How do we locate nodes and buffers in the funnel?
▪ How should we implement the merge functionality?
▪ What is a good value for z and how do we merge multiple streams efficiently?
▪ How do we reduce the overhead in the sorting algorithm?
▪ How do we sort at the base of the recursion?
▪ What are good functions for determining output buffer sizes and sizes of

subproblems to recurse on in the sorting algorithm, i.e. what are good values for α
and d?

All of these questions have multiple possible answers that will influence the
performance of our implementation. The answer to one question does not necessarily
influence the answer to another. Finding the answer to all questions that combine to
yield an optimally performing implementation implies searching the entire space of
possible combinations of answers. This space is so vast it would simply be infeasible.
What we thus do in this chapter is examine one question at a time, first determining the
best layout of the funnel, then the best way to locate nodes, and so on. We suspect that
the result of this investigating the design options in this manner will bring us very close
to an optimally performing implementation.

Since α and d influence both the funnel data structure and the funnelsort algorithm,
we postpone the analysis of what constitute good values until the implementation

 67
5.2.1 Iterators

details have been settled. Until then, we do not know what values will yield a fast
sorting algorithm, so we choose by intuition. As a guideline, we choose large values
when analyzing choices that influence merging, such as how to implement binary
merging, and large values for choices that concern the tree structure, such as layout of
the funnel. Since small values will yield small buffers and thus fewer elements merged
per node we visit, we will expose aspects of the performance relating to operating the
funnel. Conversely, large values will yield large buffers and likely more elements
merged per node we visit, thus emphasizing the performance of the implementation of
the merging algorithm. Regardless of the choice of values for the constants, for
consistency we merge k streams of k2 elements. This may not be the ideal for all values
of the constants, but it is necessary to compare across different values of constants,
since merging k′ < k streams is easier than merging k streams.

When measuring performance of the funnel (Section 5.3) we do not store the output
of the funnel, we only check that the elements are output in sorted order. We do this to
eliminate the overhead of writing and storing all the elements. Since this overhead is
common for all implementations of the funnel, it does not influence a study comparing
different implementations. As an added benefit, we automatically verify that the result
of the algorithm is correct.

5.2 Implementation Structure
In this section, we give an overview of the pieces that make up the implementation,
how they relate to each other, and what their roles are. We provide illustrative
interfaces and defer the implementation details to the following sections.

5.2.1 Iterators
The concept of iterators is used extensively in the STL. An iterator has the functionality
of a traditional pointer, in that it can be dereferenced to give the object it points to. As
with pointers to elements in arrays, an iterator can also be incremented to point to the
next element. However, any class with these properties is an iterator, so iterators serve
as a generalization of the traditional pointer and its relationship with the array; they
represent a general way of iterating through the elements of a data structure (container
of elements) in essence, a way of flattening the structure.

Using iterators is the primary way of implementing generic algorithms in C++. The
algorithm is designed without any knowledge of with what type of iterator it is used. By
this token, we can implement any container of elements and have an algorithm work on
it by implementing an iterator for it. In that sense, iterators are the glue that binds
together algorithms and elements. By abstracting away the implementation of the
iterator from both the containers and the algorithm, any algorithm can be made to work
with any set of elements.

Some containers are not as easy to navigate as arrays. For instance, one cannot (at
least in constant time) add, say, twenty to an iterator pointing to an element in a linked
list and get an iterator pointing to the element twenty past the original. For this reason,
the STL defines six categories of iterators, by what operations can be done on them in
constant time:

68 Chapter 5
Engineering the Algorithms 5.2.2

▪ Input iterator. An iterator that can only be dereferenced, incremented and
compared for equality.

▪ Output iterator. An iterator that can only be dereferenced and incremented. The
result of a dereference must be assignable, that is, the expression *x = t, ++x must
be valid for some object t if x is an output iterator. Equality comparisons are not
requred by output iterators.

▪ Forward iterator. An iterator that can be dereferenced and incremented. Further, an
iterator can be compared with other iterators to determine the relative positions of
elements they point to. The result of a dereference should be a reference to an
object, as opposed to output iterators that are allowed to return proxy object to
which objects can be assigned.

▪ Backward iterator. Same as a forward iterator, except it can be decremented, not
incremented.

▪ Bidirectional iterator. An iterator that is both a forward and a backward iterator.
▪ Random access iterator. An iterator with all the functionality of a traditional

pointer; a distance between two elements can be computed and integer arithmetic
can be done on it and iterators can be advanced a given distance. A random
iterator is also a bidirectional iterator.

A goal when designing algorithms is to restrict the requirement of the iterators used,
as much as possible.

We will be using the iterator abstraction throughout the implementation.

5.2.2 Streams
A stream is a sequence of elements. Its state consists of where to find the next element
and how many remain. To this end, we simply represent streams as a pair of input
iterators, one that points to the next element, and one that points one past the last
element. A stream is constructed from two such iterators. The iterator pointing to the
next element is returned by the member function begin and the iterator pointing the one
past the last element is returned by end.

Most containers implemented in the STL, such as std::vector, std::list, and std::set,
have member functions begin and end with the same semantics. Streams can thus be
used as wrappers for any of these containers, as well as ordinary arrays. Streams may
also be used to represent continuous (in the sense of the iterator) subsets of the
containers, in essence slices of the flattened data structure.

5.2.3 Mergers
The STL provides a binary merge algorithm. It is declared as

template<class InIt1, class InIt2, class OutIt>
OutIt merge(InIt1 begin1, InIt1 end1, InIt2 begin2, InIt2 end2, OutIt dest);

where the InIt name indicates that it only requires begin1, end1, begin2, and end2 to be
input iterators and the OutIt indicates that dest should at least be an output iterator. The
precondition is that there are a sorted set of elements between begin1 and end1, and
between begin2 and end2. When the function returns, all elements of these sets have
been written consecutively to dest, by dereferencing, assigning, and incrementing.

 69
5.2.3 Mergers

For merging in our implementation, a somewhat different approach is needed. First,
we may want to merge more than two streams at a time. Secondly, a different set of
semantics is needed. We need two kinds of mergers: the general merger and the basic
merger. Their semantics differ and their interfaces reflect it, yet they are similar.

To accommodate for more than two input streams, both are implemented as function
objects rather than functions. Function objects are simply objects that can be used as
functions. As any object, they maintain a state. The input streams of a merger are then a
part of the state of the function object, allowing us to add input streams to the merge
function. With the merge interface of the STL, we are restricted by the number of
arguments we can provide; however, there is no language restriction on the number of
times, we can alter the state of a function object.

The basic merger has a compiletime set limit on the number of streams it can merge.
Between zero and that limit of streams can be associated with it. Empty streams cannot
be associated with a basic merger. Attempting to do so will have no effect. The
semantics is essentially that of the Algorithm 4-4 on page 48; it merges as long as there
is room in the output and elements in all associated streams. The associated streams are
updated to reflect that elements have been extracted. To pass on information about
which stream caused the merger to stop by becoming empty, we use a concept of
tokens. When a stream is associated with the basic merger, a token is in turn associated
with the stream and when invoked, the basic merger is given the output and what token
to associate with the output. When done merging, it simply returns the token associated
with the stream that caused it to stop. The interface looks like this:

template<int Order, class InStream, class Token>
class basic_merger
{
public:
 typedef Token token;
 void add_stream(InStream *s, token t);
 template<class FwIt>
 token operator()(FwIt& dest, FwIt dest_end, token outtoken);
};

Note that tokens can be anything from a simple integer indicating the number of the
stream or a pointer to a complex user defined object. They are expected to be small,
however. Note also that the first argument of the operator() is passed by reference, so it
too can be updated. We require forward iterators because we need to be able to
compare them to see if we have hit the end of the input. Order is the order of the
basic_merger, also denoted z. If add_stream is called more than Order times with non-
empty streams the state of the merger becomes undefined, as is the state after a merger
has been invoked. As a simple illustration, here is what Algorithm 4-4 could look like
using a basic merger:

70 Chapter 5
Engineering the Algorithms 5.2.3

template<class Node>
void fill(Node *n)
{
 basic_merger<2,typename Node::stream,Node*> merger;
 merger.add_stream(n->left_input, n->left_child);
 merger.add_stream(n->right_input, n->right_child);
 n = merger(n->out_begin, n->out_end, NULL);
 if(n)
 fill(n);
}

In this example, we use Node* as tokens. The right input buffer is associated with the
right child and the same with left. For the output token, we simply use NULL, so if the
merger returns non-null, we call recursively on the node returned.

General mergers will be used on a larger scale and should thus provide for an
arbitrary number of input streams. The semantics differ from the basic merger either in
that it merges until the output is full or until all input streams are empty. This
eliminates the need for tokens. The interface looks like this:

template<class InStream, class Refiller, class Allocator>
class general_merger
{
public:
 general_merger(int order);
 general_merger(int order, const Allocator& a);
 static typename Allocator::size_type size_of(int order);
 void add_stream(const InStream& s);
 template<class OutIt>
 OutIt operator()(OutIt dest, OutIt dest_end);
 template<class OutIt>
 OutIt empty(OutIt dest, OutIt dest_end);
 void reset();
 void set_refiller(const Refiller& r);
 const Refiller& get_refiller();
 stream_iterator begin();
 stream_iterator end();
};

Among the main differences are that streams are now copied and maintained
internally; there is no obligation to maintain associated streams. It is still possible to see
how far the streams have advanced, by running through them using the stream_iterators
returned by begin and end. It is possible to invoke the merger repeatedly. The empty
member function template is there in anticipation of the merger storing elements
internally after they have been read from the input and before they are written to the
output. empty then provides a way of retrieving these elements, in no particular order.
The reset member function sets the begin iterator of each stream to the end, essentially
marking them all empty, and resets the internal state of the merger. This has the effect
of destroying the merger and creating a new one with the same order. The get_refiller
and set_refiller provides the interface for adding a refiller as described in Section 4.2.1.
The rest of the interface has to do with memory management, to which we will return.

 71
5.3.1 Merge Tree

5.3 Funnel
We choose to implement the two-phase funnel, not because it is the easiest to
implement, but because the simplicity it brings to prior funnel variants will not make it
perform any worse and likely make it perform better, as discussed in Section 4.1.1. The
funnel is a k-merger and when input streams are added, its implementation as such
follows the interface of a general_merger.

5.3.1 Merge Tree
We will denote the combined funnel and input streams a merge tree. A merge tree
consists of nodes and buffers. Buffers can contain any number of elements. These
elements can only exist contiguously in the buffer, but they need not be located at the
tail or the end of the buffer. When calling fill on a node, we need to identify where the
elements are in the buffer, so we can resume from where we left off the last time we
were filling its output buffer. A minimal description of the state of the merger is thus a
pair of iterators for each buffer. Conceptually, a node may also contain pointers to
where the buffers begin and end, as well as its parent and its children.

While a node need not maintain pointers for both its input and output buffers, it
should do so for either the inputs or the output. Which one is not clear; a natural one to
one relation ship exist between a node and its output, however, if we have no
information about the state of the input buffers of a node, we have to go to the child
nodes to get it, when we first start filling. This can reduce locality of reference, since
nodes are not generally located near their children. We consider that an important
aspect, so in our implementation we choose to let a node be responsible for the state of
its input buffers. Figure 5-1 illustrates a node (with z = 2), the triangle, before fill returns
from its right child. Also depicted are four pointers per buffer. Head (h) and tail (t)
indicate the beginning and end of the contiguous section of elements in the buffers and
begin (b) and end (e) indicate the beginning and end of the entire buffer.

Figure 5-1. The pointers involved in a fill operation.

h

t

t

h

e

b

b

t

h

e

b

e

72 Chapter 5
Engineering the Algorithms 5.3.2

The situation in the figure is that prior to invoking its right child, fill called fill on the
left child. That fill operation caused the subtree to become exhausted and thus the output
was not completely filled. Some elements were then merged from the left input before
the right got empty and fill was invoked on the right child. It, in turn, exhausted its
subtree before returning.

Basic mergers are used to carry out the fill. Before invoking the basic merger,
streams consisting of the head and tail of the input buffers are added to it, using
add_stream. Then it is invoked with head and tail of the output as its arguments. This
requires an invariant that elements in input streams lie from head to tail and elements in
the output stream lie between begin and head. To maintain this invariant, we flip the
buffers with a flip operation as we pass them when calling recursively on a child node
or return from a recursive call. It consists of the double assignment (t = h, h = b). When
returning from a fill, by induction, we know that the buffer we passed contain elements
from b to h. After the flipping the buffer, we have h equal to the old b, the beginning of
the elements, and t equal to h, the end of the elements, and thus a valid input buffer.
Conversely, when calling recursively and passing an input buffer the flip operation
turns the buffer into a valid output buffer.

As discussed, the gereral merger interface allows for arbitrary types of input streams,
while the funnel maintains its own buffers. These buffers are elements allocated from
the heap and the iterators used when merging them are simple pointers stored in the
nodes. However, the input streams of the general merger cannot in general be
represented by a pair of pointers. This presents two problems. First, we are wasting
space storing pointers we are not using. Second, the leaves do not readily know from
where to get the input. The first problem is easily solved by not actually allocating
space for the leaf nodes.1 We may then say that pointers the non-existing leaves in their
parents are wasteful, however they are not, because we need some way to distinguish
internal nodes from leaf nodes. The second problem is solved by storing the input
streams in a separate array. When calling recursively, we keep track of the path we took
and use it to locate the appropriate streams in the array. This in turn will give a minor
overhead, however we consider it a small price to pay to get genericity.

5.3.2 Layout
As early as 1964, laying out trees in a particular way was known to be useful; careful
layout of the tree used in the implementation of the heap, paved the way for the in-place
heapsort [Wil64]. For our purpose, neither the analysis nor the correctness of the
algorithms requires us to lay out the tree in any particular way. However, as we saw in
Section 3.1.3, page 32, in case of binary search and as shown through experimental
analysis in [BFJ02] and [LFN02], a well-chosen layout of the tree can yield a
significant increase in performance.

As we have seen in Section 3.1.3, using the van Emde Boas layout for binary search
trees gives an asymptotical reduction in the number of memory transfers incurred. That
is not the case in when dealing with funnels. However, as argued in the proof of
Theorem 4-3, fill does a number of tree operations, including recursive call invocations,
flip operations, etc., proportional to the total number of comparisons and moves

1 Our implementation does not current exploit this observation. It allocates a full tree, but never actually
visits the leaf nodes.

 73
5.3.2 Layout

performed, and thus visits a new node a significant number of times. Laying out nodes,
so they are near each other, may then increase the algorithms overall locality
significantly.

Aside from increasing locality, using controlled layout allows us to compute the
position of the nodes relative to each other. This eliminates the need for accessing
pointers to children stored in nodes and the potential data hazard in the pipeline. This
latter aspect may well be as important as the first.

Implementation
In the implementation of the funnel, we use the STL concept of an allocator. The
allocator is simply a class, through which algorithms can dynamically create objects.
All containers in the STL provide a way for the user to supply an allocator. By
abstracting away the allocation mechanism, the user of the containers is free to provide
their own allocators and thereby control how objects are dynamically created. Such a
mechanism is also provided through the new operator; however, the new operator is
global and cannot be customized on a per algorithm or per container basis. If the user
does not supply an allocator a default allocator, std::allocator, is used. std::allocator in
turn uses the new operator.

The construction and destruction of funnels are done through a layout class template.
Its interface is simple; the only reason for putting this functionality in a class is that we
may parameterize funnels over different implementations.

template<class Navigator, class Splitter, class T, class Allocator>
class layout
{
public:
 typedef typename Navigator::node node;
 static node *do_layout(int order, Allocator& alloc);
 static void destroy(node *root, int order, Allocator& alloc);
};

The interface consists of two static member functions: do_layout and destroy.
do_layout allocates and lays out a complete tree of a given order and returns a pointer to
the root, and destroy tears down and deallocates the tree. It is parameterized by a
navigator (see below), a splitter defining the size of the buffers, the type of elements in
buffers and finally the allocator.

The Splitter plays the important role of deciding at what height we split the funnel
when doing the van Emde Boas recursion (our implementation simply returns h/2, with
h being the height of the funnel being split) and what capacity the output buffer of a k-
funnel should have. As such, it is used extensively throughout the implementation of
both the funnel and funnelsort.

A given layout implementation ensures that allocating nodes and arrays of elements
is done in a specific order. Achieving correct layout then relies on the allocator
fulfilling memory requests in a contiguous manner. Our implementation includes an
allocator, stack_allocator that does this by allocating a large chunk of memory once
using new and move and return a pointer into this chunk, in response to memory
requests. The amount of space needed for the initial allocation has to be determined at
allocator construction time. For general mergers, the space needed is computed exactly
by the static size_of member function.

74 Chapter 5
Engineering the Algorithms 5.3.2

Mixed and Pooled Layouts
Each layout comes in two variants. One that, as described below, allocates nodes and
buffers intermixed, and one that allocates a pool of elements in which the buffers are
placed. The first variant is called mixed, the latter pooled. The pooled layouts result in
nodes being allocated together, much like the search trees of [BFJ02] followed by
buffers laid out contiguously.

The van Emde Boas Layout
We have already discussed the van Emde Boas layout. In our implementation, it is
realized by first recursively laying out the top tree then for each bottom tree from left to
right, allocating its output buffer then recursively laying out the tree. Figure 5-2 shows
a funnel laid out in the array below it. Note the stack_allocator allocates backwards.

Figure 5-2. The van Emde Boas mixed layout.

Breadth-first Layout
The breadth first layout was the layout used in [Wil64] for implementing heaps. The
nodes of the tree are allocated in the order they are visited by a left-to-right breadth first
traversal of the tree. This is achieved by recursively allocating a funnel of height one
smaller and then allocate the leaf nodes and their output buffers from left to right. The
number by the nodes and buffers in Figure 5-4 show the order in which they are
allocated. The numbers in Figure 5-3 shows the relative positions of nodes and buffers,
when using pooled breadth-first layout.

L0 L1 L2 L3

R

B1B0 B2 B3

R B0 L0 B3 L3

 75
5.3.2 Layout

Figure 5-3. Breadth-first pooled layout.

Figure 5-4. Breadth-first mixed layout.

Depth-first Layout
In the depth-first layout, the nodes and their output buffers are allocated in the order
they are visited in a left-to-right depth first traversal of the tree. This is achieved by
allocating the root and recursively allocate the subtrees below it from left to right.
Before allocating the subtrees, their output buffer is allocated. The order can be seen in
Figure 5-5.

1

2 3

4 5

16 17

18 19 20 21

6 7

22

8

23

9

25

11

27

13

29

15

24

10

26

12

28

14

1

3 5

7 9

2 4

6 8 10 12

11 13

14

15

16

17

20

21

24

25

28

28

18

19

22

23

26

27

76 Chapter 5
Engineering the Algorithms 5.3.3

Figure 5-5. Depth-first mixed layout.

5.3.3 Navigation
A class known as a navigator is responsible for locating the parts of the funnel.
Confining this functionality to a class allows us to experiment with different ways of
traversing the funnel. Its interface is as follows:

template<class Node, class Splitter>
class navigator
{
public:
 typedef … token;
 typedef … bookmark;
 typedef Node node;
 typedef typename Node::stream buffer;
 token parent();
 token child(int i);
 navigator& operator+=(token t);
 navigator& next_dfs();
 template<class Functor>
 Functor enum_buffers(Functor f);
 level_iterator begin_level(int depth);
 level_iterator end_level(int depth)
 bookmark mark() const;
 bool operator==(bookmark m) const;
 bool operator!=(bookmark m) const;
 bool is_root() const;
 bool is_leaf() const;
 buffer *input();
 buffer *output();
};

Navigators resemble iterators in that they represent a single node in a data structure;
however, they are capable of going in more directions than forward and backward. To

1

3 17

5 11

2 16

4 10 18 24

19 25

6

7

8

9

14

15

22

23

28

28

12

13

20

21

26

27

 77
5.3.3 Navigation

support this in a generic way, we introduce a new token type, used to represent
directions. Going to the parent is one direction and going to each of the children is
another. The navigator is responsible for flipping buffers it passes.

The begin_level and end_level member functions provide a way to iterate through
nodes on a specific level. level_iterators are bidirectional iterators dereferencing to
pointers to nodes. This is used to tell the nodes where their children are placed during
the construction and layout of the tree (hence the dependency of layout class on
navigator classes). next_dfs moves the navigator to the next node in a search, where the
nodes are enumerated in a way that when we visit a node, we have visited all nodes
below it. This is used in the warm-up phase. enum_buffers provides for a way of
enumerating buffers. This is used for resetting the merger for and emptying the buffers.

A simple implementation of a navigator is one that relies on the nodes to supply the
address of their children and parents, but that requires the space in each node and the
navigator to access these pointers. We define four categories of nodes, based on the
information stored in them:

▪ Simple node. A node that stores nothing but the head and tail of its input streams.
▪ Flip node. A simple node that also stores the beginning and end of their input

buffers. As the name implies, these nodes can flip their own input buffers.
▪ Pointer node. A simple node also storing the address of its children.
▪ Pointer flip node. A flip node also storing the address of its children.

Navigators that are more sophisticated will require less information of the nodes.
Note that no category of nodes requires the node to store pointers to its parents. The
reason for this is that the navigator can store pointers to nodes on the path to the current
node, on a stack using much less space. On another stack, navigators keep information
about output buffers on the path from the root to the current node. This is to avoid
accessing data in the parent node.

A general pointer_flip_navigator has been implemented. It requires the funnel to be
built using pointer flip nodes and all operations are implemented using the two
mentioned stacks and the information stored in the nodes. Aside from the two stacks, a
pointer to the current node is maintained and tokens are simply pointers to nodes.

If we choose to use the default allocator, we have no guarantee of where nodes and
buffers are placed, so we are forced to use pointer flip nodes and the
pointer_flip_navigator. When using stack_allocator and the mixed variants of the layouts,
we know that the output buffer of a node lies immediately after the node itself. Using
pointer nodes, the beginning of the i’th buffer can be obtained by adding the size of a
node to the address of the i’th child, thus providing the information needed in a flip
operation. When using the stack_allocator, we know where the nodes and buffers are
placed. Our implementation includes navigators that exploit this for all pooled layouts
and for the mixed variant of the van Emde Boas layout. For pooled layouts, we must
use at least flip nodes, while the navigator for mixed van Emde Boas only requires
simple nodes. We compute the address of the parents and children of each layout in the
following way:

For the pooled breadth-first layout, the i’th child (counting from 0) of a node
positioned at index j is located at index (j-1)z+i+2 and its parent is located at index (j-
2)/z+1. For the pooled depth-first layout, we use a measure d that is the distance
between the child nodes. When at the root, d is the number of nodes in a full tree of

78 Chapter 5
Engineering the Algorithms 5.3.3

height one smaller than the funnel. The i’th child of a node positioned at index j is then
located at address j+id+1. When going to a child we integer divide d with z. When
going to the parent, we multiply and add one, and the index becomes j-id-1, where the
node is the i’th child of the parent. i is computed as (k+z-2) mod z, with k being the
breadth-first index. The result of these operations gives us the index of a node in the
layout, with the root located at index 1. The final address is then computed by
subtracting this index from the known location of the root. For this to work, we use
perfect balanced trees as discussed below.

For the mixed van Emde Boas layout, we observe that when following the recursion
until the node is the root of a bottom tree, it will be at an offset from the root of the top
tree given by the size of the bottom trees and their output buffers times the number of
bottom trees to the left of the child plus the size of the top tree. The number of bottom
trees to the left is k mod (n+1), with n being the number of nodes in the top tree and k
being a breadth-first-like index that is updated with kz+i, when going to the i’th child
and k/z when going to a parent. The size of the bottom tree is kept is in a pre-computed
table B as is the depth D of the root of the top and the number of nodes in the top tree N.
These tables can be computed with one entry per level of the tree, since the recursion
unfolds the same way for all nodes on the same level. The address of the nodes on the
path from the root to the current node is kept in a table P, so address of the root of the
top tree is P[D[d]] with d being the depth of the current node. The last ingredients is a
table T with the size of the top tree. The address of the i’th child then becomes

 [] [][] []()() [] []()mod 1P d P D d k N d B d T d= − + + (5.1)

We know that N[d] = (zj-1)/(z-1) for some integer j. With z = 2, we can thus compute
k mod (N[d]+1) as k and N[d] which is likely to be faster. With the parameter z an integer
template argument, we select the faster way through partial template specialization. For
pooled layout, the modification lies in that buffer sizes should not be included in the
offset from the root of the top tree. This in turn makes the table T identical to table N,
so one of them can be discarded. For general z and z = 2 respectively, we get

 [] [][] []()() [] []()mod 1P d P D d k T d B d T d= − + + (5.2)

 [] [][] []() [] []()andP d P D d k T d B d T d= − + (5.3)

The relation in (5.3) is in turn what was used in [BFJ02] for navigating optimal
cache-oblivious binary search trees.

All implementations of navigators require storing multiple tables. This will make it,
unlike iterators, infeasible to pass them as arguments to functions and in turn,
unsuitable for use in recursive functions. Our implementation of fill is thus based on an
unfolded recursion. Using the navigator abstraction and an unfolded recursion may
increase the overall instruction count beyond what is possible using the simple
recursive scheme of Algorithm 4-4. To clarify this, a recursive implementation was also
made, however it requires the use of pointer flip nodes.

 79
5.3.3 Navigation

Non-power-of-z-funnels
Before proceeding with the experiments with layout and navigation, a point about
unbalanced trees need to be made. The problem is that if we want to merge zh+1
streams, we may have to lay out a zh+1-funnel, which takes up a lot more space. It is
indeed not necessary to lay out the entire zh+1-funnel, since some of it will not be used.
Figure 5-6 shows how to conserve space by not constructing an entire funnel.

Figure 5-6. A merge tree of order 16 and z = 3.

However, not laying out a complete tree will foil all of the implicit navigation schemes
described above, thus layout classes are asked to layout balanced trees when using
implicit navigators. When using pooled layout, only the nodes of the balanced tree are
laid out; the buffers are not. For the mixed van Emde Boas layout, however, we need to
lay out a fully balanced funnel. When z becomes large, this may matter for certain
values of k.

Test Results
For constructing funnels, we now have the choice between three layouts with two
variants each, the choice of using the default allocator or using the stack_allocator, and
the choice of using an implicit navigator or a general pointer_navigator or
pointer_flip_navigator. This amounts to a total of 3⋅23 = 24 combinations, however, we
cannot use implicit navigators with the default allocator, so a fourth of the
combinations cannot be used. Furthermore, implicit navigators for mixed depth-first
and mixed breadth-first have not been implemented. A total of ¾⋅24-2 = 16
combinations remain. They are listed in Table 5-1.

80 Chapter 5
Engineering the Algorithms 5.3.3

Name Layout Allocator Node Navigator
pb_heap_mveb Mixed van Emde Boas std::allocator Pointer flip Pointer flip
pb_stack_mveb Mixed van Emde Boas stack_allocator Pointer Pointer
impl_mveb Mixed van Emde Boas stack_allocator Simple Implicit
pb_heap_veb Pooled van Emde Boas std::allocator Pointer flip Pointer flip
pb_stack_veb Pooled van Emde Boas stack_allocator Pointer Pointer
impl_veb Pooled van Emde Boas stack_allocator Flip Implicit
pb_heap_mbf Mixed breadth-first std::allocator Pointer flip Pointer flip
pb_stack_mbf Mixed breadth-first stack_allocator Pointer Pointer
pb_heap_bf Pooled breadth-first std::allocator Pointer flip Pointer flip
pb_stack_bf Pooled breadth-first stack_allocator Pointer Pointer
impl_bf Pooled breadth-first stack_allocator Flip Implicit
pb_heap_mdf Mixed depth-first std::allocator Pointer flip Pointer flip
pb_stack_mdf Mixed depth-first stack_allocator Pointer Pointer
pb_heap_df Pooled depth-first std::allocator Pointer flip Pointer flip
pb_stack_mdf Pooled depth-first stack_allocator Pointer Pointer
impl_df Pooled depth-first stack_allocator Flip Implicit

Table 5-1. The possible combinations of layout and navigation available
in our implementation

The 12 non-implicit combinations are also implemented with pointer flip nodes
using a pure recursive fill function. Their names have “pb” exchanged with “rec”.

For the experiment, we have had each of the 24 funnels merge k streams of k2
elements each using k-funnels with z = 2, α = 1 and d = 2 and k = 15, 25, … 270. The
streams are formed by allocating an array of k3 pseudorandom elements (pairs of long
and void*) and sorting sections of size k2 with std::sort. The funnel is constructed the
streams attached, elements merged, and the merger reset 20,000,000/k3 times. The time
measured is the time it takes to do this, save for the construction of the funnel. The
output of the funnel is not stored anywhere; it is simply passed through an output
iterator that checks whether the elements are sorted.

To avoid having to display 24 data series in the same chart, the result of the
experiment is presented as a tournament with a group of implicits, a group of pointer
navigators using default allocator, one using stack_allocator, one recursive using default
allocator, and finally one using stack_allocator. From each group we choose a winner to
appear in the final chart. The result is as follows. First, let us look at implicit
navigation.

 81
5.3.3 Navigation

Pentium 4, 512/512

80%

85%

90%

95%

100%

105%

110%

115%

0 50 100 150 200 250 300
Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

impl_bf

impl_df

impl_mveb

impl_veb

Chart C-1. Implicit layout on Pentium 4.

Pentium 3, 256/256

85%

90%

95%

100%

105%

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

impl_bf

impl_df

impl_mveb

impl_veb

Chart C-2. Implicit layout on Pentium 3.

MIPS R10000, 1024/128

80%

85%

90%

95%

100%

105%

0 50 100 150 200 250

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

impl_bf

impl_df

impl_mveb

impl_veb

Chart C-3. Implicit layout on MIPS 10000.

82 Chapter 5
Engineering the Algorithms 5.3.3

The charts are normalized to breadth-first layout, which on both the Pentium 3 and the
MIPS architectures are clearly the worst performers, even though it has the smallest
instruction count. The reason for this must be effects in the memory system. The
measurements made by PAPI on the MIPS, indicates that it is not as much the L2 cache
rather the TLB that makes the difference:

MIPS R10000, 1024/128

90%

95%

100%

105%

110%

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

impl_bf

impl_df

impl_mveb

impl_veb

Chart C-4. Implicit layout on MIPS 10000, relative L2 cache misses.

MIPS R10000, 1024/128

85%

90%

95%

100%

105%

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

impl_bf

impl_df

impl_mveb

impl_veb

Chart C-5. Implicit layout on MIPS 10000, relative TLB misses.

The L2 cache incurs about the same number of misses regardless of layout, perhaps
with the breadth-first incurring more misses; however, for large funnels (height at least
six), we can see that some layouts are more “TLB friendly” than others are. TLB misses
are handled in software on the MIPS so the performance penalty is greater. The
breadth-first layout exhibits least locality as observed in [BFJ02]. The reason for this is
that the parent is, except at the top, always located far from its children. All but the left
most child are also placed far from the parent in depth-first layouts as well; however,
for z = 2, that is half the children of a node, so it is not such a significant effect.

 83
5.3.3 Navigation

Navigating a pooled depth-first funnel requires us to update three variables when going
from node to node. All three architectures are super-scalar, so these updates can occur
in parallel and need thus not take any longer than just updating the breadth-first index.

That the mixed van Emde Boas layout does not suffer from being forced to lay out
balanced trees is also noteworthy. The fact that the buffers are not touched during the
fill phase of the merge contributes to this. The best combination seems to be the pooled
van Emde Boas Layout on all architectures. It has good locality and the navigation is
not as complex as the mixed van Emde Boas layout, which may have even higher
locality. Hence, we choose the pooled van Emde Boas Layout as the winner of this
group.

Let us now turn to the pointer-based navigators. When using the default allocator,
none of the architectures seems to prefer any of the layouts particularly. As an example,
the result from the Pentium 3 can be seen here:

Pentium 3, 256/256

95%

97%

99%

101%

103%

105%

0 50 100 150 200 250 300
Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

pb_heap_bf

pb_heap_df

pb_heap_mbf

pb_heap_mdf

pb_heap_mveb

pb_heap_veb

Chart C-7. Layout using std::allocator on Pentium 3.

We choose the depth-first layout for the final, because the Pentium 4 shows a slight
(<1%) shift in its favor. The picture changes when using the stack_allocator:

84 Chapter 5
Engineering the Algorithms 5.3.3

Pentium 3, 256/256

95%

96%

97%

98%

99%

100%

101%

102%

103%

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

pb_stack_bf

pb_stack_df

pb_stack_mbf

pb_stack_mdf

pb_stack_mveb

pb_stack_veb

Chart C-12. Layout using stack_allocator on Pentium 3.

MIPS R10000, 1024/128

95%

97%

99%

101%

103%

105%

107%

0 50 100 150 200 250 300
Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

pb_stack_bf

pb_stack_df

pb_stack_mbf

pb_stack_mdf

pb_stack_mveb

pb_stack_veb

Chart C-13. Layout using stack_allocator on MIPS 10000.

The Pentium 3 (as well as the Pentium 4) clearly favors the pooled layouts, while the
MIPS favors the mixed. There does not seem to be any special preference in the PAPI
results. One explanation could lie in the lower level caches; when using pooled layouts,
all the nodes can fit in L1 cache and if the associativity of the L1 cache is sufficiently
high, they will likely stay there. However, if the cache has low associativity, it is likely
that it cache lines with nodes on them will be evicted due to conflict misses during
operations elsewhere in the funnel. In the latter case, it is probably best to store the
nodes near the action. As it is, the Pentium 4 has a four-way set associative L1 cache
while that of the MIPS is only two-way set associative. We choose in favor of the
Pentiums and send the pooled depth-first layout to the final.

When using the recursive implementation of fill, the Pentium 4 again has no
preferences with less than 2% difference in performance. The Pentium 3, however,
seem to prefer the pooled layouts not only with the stack_allocator, but also when using
the default allocator:

 85
5.3.3 Navigation

Pentium 3 256/256

95%

97%

99%

101%

103%

105%

0 50 100 150 200 250 300
Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

rec_heap_bf

rec_heap_df

rec_heap_mbf

rec_heap_mdf

rec_heap_mveb

rec_heap_veb

Chart C-17. Recursive fill, heap, Pentium 3.

Pentium 3, 256/256

95%

97%

99%

101%

103%

105%

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

rec_stack_bf

rec_stack_df

rec_stack_mbf

rec_stack_mdf

rec_stack_mveb

rec_stack_veb

Chart C-22. Recursive fill, stack, Pentium 3.

The MIPS fortunately seem to have lost its interest in the mixed layouts:

86 Chapter 5
Engineering the Algorithms 5.3.3

MIPS R10000, 1024/128

95%

97%

99%

101%

103%

105%

0 50 100 150 200 250 300
Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

rec_stack_bf

rec_stack_df

rec_stack_mbf

rec_stack_mdf

rec_stack_mveb

rec_stack_veb

Chart C-23. Recursive fill, stack, MIPS 10000.

We choose the pooled van Emde Boas layouts for the final. Now that we have
chosen a good layout from each of the groups, it is time to compare them to each other,
now normalized to stack based layout with recursive navigation implementation.

Pentium 4, 512/512

95%

105%

115%

125%

135%

145%

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

impl_veb

pb_heap_df

pb_stack_df

rec_heap_veb

rec_stack_veb

Chart C-26. Final, Pentium 4.

 87
5.3.3 Navigation

Pentium 3, 256/256

95%

97%

99%

101%

103%

105%

107%

109%

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

impl_veb

pb_heap_df

pb_stack_df

rec_heap_veb

rec_stack_veb

Chart C-27. Final, Pentium 3.

MIPS R10000, 1024/128

90%

95%

100%

105%

110%

115%

0 50 100 150 200

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

impl_veb

pb_heap_df

pb_stack_df

rec_heap_veb

rec_stack_veb

Chart C-28. Final, MIPS 10000.

We see that the Pentium 4 gains tremendously from using a recursive
implementation of fill. This can be contributed to the number of transistors dedicated to
avoiding control hazards. The Pentium 4 has a special return address stack, used by the
fetch unit when returning from a function call. The stack contains the address of the
next instruction to be fetched, which will then be ready immediately. When recursions
are not too deep (as is the case here), this approach is far better than using conditional
branches in the loops of the unrolled recursion. The effect is far from as pronounced on
the Pentium 3 and the MIPS, where the effect is more likely due to overall lower
instruction count.

We can also see that the implicit navigation is competitive only when on equal
terms, comparing to the pointer-based navigators. When comparing implicit with the
recursive algorithm, the simple recursive approach performs much better. Moreover, it
turns out that whether using controlled layout through stack_allocator or leaving it to the
heap allocator does not make a significant difference. Indeed, MIPS tend to favor

88 Chapter 5
Engineering the Algorithms 5.3.4

memory delivered directly by the heap allocator. A reason for this is that the heap
allocator is system specific and thus has detailed knowledge of the system parameters.
This in turn allows it to allocate memory that is e.g. aligned on cache line boundaries.

Conclusion
In all, we conclude that the effects of the layout, and in turn the effects of cache, are
dwarfed by other aspects. The key to achieving high performance in funnel
implementations is through simplicity, rather than complex layouts. However, a good
layout, such as depth-first or the van Emde Boas, seems to give a couple of percent on
the performance scale.

5.3.4 Basic Mergers
By far the most time in a good funnel implementation should be spend merging
elements. In our implementation, this means the basic mergers. Making sure they are
performing optimally is thus important to achieving overall high performance.

The body of the fill algorithm (page 48) essentially implements the basic_merger
application operator. When calling add_stream on a basic_merger, if the stream is not
empty a counter, named active, is incremented and the stream and the associated token
is stored. If it is empty, it is simply ignored. Upon invocation, the basic merger will
check active. If it is zero, it returns immediately. If it is one, the contents of the only
stream are copied to the output. If the input got empty, we return its token; otherwise,
we return the output token. If active is greater than one, the actual merging begins. The
implementation of the merging is put in a member function named invoke.

Binary Mergers
There are a couple of subtleties concerning the use of basic mergers, which we will
now discuss. The streams added to the basic merger is a part of the object state and are
as such accessed through the this pointer. In general, this will cause a slight overhead
every time we access them, which is a couple per element merged. However,
basic_mergers are stack objects of the fill function, so in fill, the this pointer is a
compiletime computable constant offset from the stack pointer. Provided the operator()
is inlined into the fill function, this will also merely be a constant offset from the stack
pointer, thus the member variables will act as if they are normal stack variables and can
as such be accessed without having to dereference the this pointer. Nonetheless, even
though we insist that the compiler should inline the functions, the speed is increased if
we make local copies of the member variables. This must be contributed to poor code
generation on behalf of the compiler.

Another subtle issue that cannot be attributed to the compiler is the aliasing problem,
that arises from passing the begin iterator of the output by reference. In such situations,
the compiler cannot in general be certain that the iterator (which is often just a pointer)
does not reference another iterator, in particular one of the input iterators. This in turn
means it has to generate code that updates the referenced iterator and not just a local
copy, each time the output iterator is updated. This turns writing elements to the output
into a double dereferencing and incrementing the output begin iterator a load-
increment-store instead of just an increment.

Since we know the output begin pointer is unique, and a reference to it does not
reference any other pointer, we can solve this problem by explicitly making a local

 89
5.3.4 Basic Mergers

copy of it, use that for merging, and write it to the referenced iterator before returning.
The complete merging code implementing Algorithm 4-4 looks like this:

template<class FwIt, class T, class Comp>
inline Token invoke(FwIt& b, FwIt e, Token outtoken, Comp& comp)
{
 typename Stream::pointer head[2] =
 { stream[0]->begin(), stream[1]->begin() };
 typename Stream::pointer tail[2] =
 { stream[0]->end(), stream[1]->end() };
 FwIt p = b;
 while(p != e)
 {
 if(comp(*head[0],*head[1]))
 {
 *p = *head[0], ++head[0], ++p;
 if(head[0] == tail[0])
 {
 outtoken = token[0];
 break;
 }
 }
 else
 {
 *p = *head[1], ++head[1], ++p;
 if(head[1] == tail[1])
 {
 outtoken = token[1];
 break;
 }
 }
 }
 *stream[0] = Stream(head[0],stream[0]->end());
 *stream[1] = Stream(head[1],stream[1]->end());
 b = p;
 return outtoken;
}

This basic merger implementation is called simple_merger. We see that each time a
single element is merged in the funnel at least three conditional branches have to be
evaluated, namely the branch in the while loop, the branch on which head is smaller, and
the branch on whether the input got empty. This could be a major overhead. However,
due to sophisticated branch prediction techniques, predictable branches need not cause
any performance penalty. The test that branches on which head element is smaller is
inherently unpredictable; however, we expect the loop branch and the branch on empty
input to be more predictable.

Consider a funnel with height power-of-two. No rounding is necessary when
following the van Emde Boas recursion, so between every other level, there is a buffer
of size αzd. With α = 1, z = 2, and d = 3, these buffers can contain eight elements. This
means that at most eight elements can be merged before one of the two branches
something different from the last time and cause a pipeline flush. This is not a lot. A
quick fix would be to increase α, but this will not make the per merged element
branches go away. We could also look at the problem more intelligently; since we
know these branches will not fail (in the sense that they cause the loop to break) until

90 Chapter 5
Engineering the Algorithms 5.3.4

enough elements have been moved to either make the output full or on of the inputs
empty. We can see that the number of elements will be at least the minimum of the
number of elements in the input streams and the space available in the output. The
adapted loop then looks like this:

Diff min = e-p;
if(tail[0]-head[0] < min)
 min = tail[0]-head[0];
if(tail[1]-head[1] < min)
 min = tail[1]-head[1];
do
{
 assert(min);
 for(; min; --min)
 if(comp(*head[0],*head[1]))
 *p = *head[0], ++head[0], ++p;
 else
 *p = *head[1], ++head[1], ++p;
 min = e-p;
 if(tail[0]-head[0] < min)
 min = tail[0]-head[0];
 if(tail[1]-head[1] < min)
 min = tail[1]-head[1];
}
while(min);

which we denote the two_merger. The benefit of this approach is that we have
eliminated one of the branches from the core merge loop, but at the price of having to
compute the minimum now and again. However, the minimum can be computed
entirely without using branches, namely by using conditional move instructions, so the
overhead should be small. A worst-case scenario would be an input buffer consisting of
a single large element, the other input of many small elements, and plenty of space in
the output. The single element would cause the minimum to be one and thus the
minimum to be recomputed every time one of the small elements is moved to the
output.

To get a feel for how often such asymmetrical stream sizes occur, we counted the
number of times the smallest input stream was a given fraction of the size of the largest
stream. The resulting distribution can be seen in Figure 5-7. This was obtained through
a full run of funnelsort on 0.7 million, 7 million, and 16.3 million uniformly distributed
elements with α = 16 and d = 2.5.

 91
5.3.4 Basic Mergers

0%

1%

2%

3%

4%

5%

6%

7%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

16.3M
7.0M
0.7M

Figure 5-7. The distribution of relative sizes of input streams of basic

mergers.

We can see that there is a slight tendency for the input streams to be of equal size;
however, in general the small input stream can have a size any fraction of the size of
the large input stream. Thus, we do not expect extremely small streams to be merged
with very large streams with any significant frequency.

Still, perhaps we can gain further performance if we used a merge function that took
into account the fact that sometimes we need to merge smaller streams with large
streams and do that more efficiently. [Knu98] includes a description of an algorithm
(Algorithm H, Section 5.3.2) originally due to F. K. Hwang and S. Lin that achieves
near-optimal number of comparisons on inputs of this type. The adaptation of it to the
basic merger setting is slightly tricky so we leave it out and refer to the accompanying
source, where it is implemented as the hl_merger. It has a significant overhead but it
may be that it is outweighed by the frequency of asymmetrical stream sizes. From a
theoretical perspective, this merger can decrease the total number of comparisons
performed in the funnel.

Realizing that the overhead of these more clever mergers may hamper their
performance, we could also employ hybrid mergers; mergers that only use clever tricks
under certain conditions. The hyb3 merger checks the relative size of the input streams.
If the size of one stream is more than four times the size of the other, the hl_merger is
used. Otherwise, the two_merger is used, but only as long as minimum is at least eight.
From then on, it uses simple_merger. The hyb merger is a hybrid of only two_merger and
simple_merger also with a cutoff at minimum of eight. The hyb0 only computes
minimum once does one iteration of two_merger and proceeds with simple_merger. The
reason this makes sense is that about half the times a basic merger is invoked, the
minimum will be determined by the space available in the output, since on every other
level of the funnel, the output buffer has a larger capacity than the input buffers. If that
is the case, the minimum computed will be the exact number of elements moved during
the entire merge. If it is not the case, we continue with simple_merger to minimize
overhead.

We performed the same benchmark as with the analysis of layout and navigation.
Here we used the rec_heap_mveb and realizing that the choice of constants α and d can

92 Chapter 5
Engineering the Algorithms 5.3.4

be significant we ran the test for (α,d) = (1.0, 3.0), (4.0, 2.5), and (16.0, 1.5). With these
parameters, the smallest buffers are of size 8, 23, and 45, respectively. The results for
(α,d) = (1.0, 3.0) can be seen here:

Pentium 4, 512/512

0,85

0,95

1,05

1,15

1,25

1,35

1,45

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

simple,1,3.0

two,1,3.0

hyb,1,3.0

hl,1,3.0

hyb0,1,3.0

hyb3,1,3.0

Chart C-31. Basic mergers, (α,d) = (1,3), Pentium 4.

Pentium 3, 256/256

0,85

0,95

1,05

1,15

1,25

1,35

1,45

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

simple,1,3.0

two,1,3.0

hyb,1,3.0

hl,1,3.0

hyb0,1,3.0

hyb3,1,3.0

Chart C-32. Basic mergers, (α,d) = (1,3), Pentium 3.

 93
5.3.4 Basic Mergers

MIPS 10000, 1024/128

0,95

0,97

0,99

1,01

1,03

1,05

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

simple,1,3.0

two,1,3.0

hyb,1,3.0

hl,1,3.0

hyb0,1,3.0

hyb3,1,3.0

Chart C-28. Basic mergers, (α,d) = (1,3), MIPS 10000.

The MIPS produces a lot of noise (note the scale); however, it is clear that with a
minimum buffer size of eight, not enough elements are merged per basic merger
invocation to warrant the use of any method that has an overhead associated with it on
any of the architectures. The overhead of the hl_merger made the entire merge take at
least three times longer and is thus far off scale. In addition, the difference in all
benchmarks between the hyb_merger and the hyb3_merger is minimal, implying that
cases where the smaller stream has less than a forth the number of elements of the large
stream are rare and that in those cases using the hl_merger neither improves nor worsens
the performance.

Going from (α,d) = (1.0, 3.0) to (4.0, 2.5) the two_merger does not gain much, but the
hybrids start to get competitive at least on Pentium 3 and MIPS. Going to (16.0, 1.5), the
Pentium 4 finally seems to benefit from the tighter inner loops of the hyb0_merger;
however, using the pure two_merger still incurs a 35% running time increase.

Pentium 4, 512/512

0,85

0,95

1,05

1,15

1,25

1,35

1,45

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

simple,16,1.5

two,16,1.5

hyb,16,1.5

hl,16,1.5

hyb0,16,1.5

hyb3,16,1.5

Chart C-37. Basic mergers, (α,d) = (16,1.5), Pentium 4.

94 Chapter 5
Engineering the Algorithms 5.3.4

Pentium 3, 256/256

0,85

0,95

1,05

1,15

1,25

1,35

1,45

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

simple,16,1.5

two,16,1.5

hyb,16,1.5

hl,16,1.5

hyb0,16,1.5

hyb3,16,1.5

Chart C-38. Basic mergers, (α,d) = (16,1.5), Pentium 3.

MIPS 10000, 1024/128

0,95

0,97

0,99

1,01

1,03

1,05

0 50 100 150 200 250 300

Order

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

simple,16,1.5

two,16,1.5

hyb,16,1.5

hl,16,1.5

hyb0,16,1.5

hyb3,16,1.5

Chart C-39. Basic mergers, (α,d) = (16,1.5), MIPS 10000.

We conclude that the branch prediction unit of the Pentium 4 is very effective and
that using any explicit intelligence to aid in avoiding slightly unpredictable branches
will only hurt performance. The MIPS only has a six-stage pipeline, so any
unpredictability in branches will not influence performance much. Still, it benefits from
the tighter loop. Handling cases where the output buffer sets the limit on the number of
elements merged in a special tight loop will improve average performance 3-5%
percent on Pentium 3 and MIPS. Any more overhead and performance will get poorer.

Higher Order Mergers
Having established good ways to merge two streams, we are interested in extending the
capability to merging of higher order and establish how that affects performance.
[ACV+00] provides compelling evidence that merging with low orders can significantly
increase performance; instead of using a traditional multiway mergesort, they restrict
the sort to only use mergers of order no higher than some constant, instead of allowing
the order to grow to M/B. This in turn will give them more passes, but the benefit of

 95
5.3.4 Basic Mergers

using small mergers outweighs that cost. We are looking at the other end of the scale,
comparing binary merge to higher order; never the less, we should see that performance
increases, when increasing the order to a certain number.

There can be at least two reasons for any increase in performance. One is, as
[ACV+00] argues, that merging e.g. four or six streams can be done with all stream
pointers stored in registers. The same is the case with merging two streams but with
more streams, the registers are better utilized. This will not be the case on the Pentium
machines, where only eight general purpose registers are available, barely enough to
hold the pointers involved in merging two streams, however spilling the pointers to fast
L1 cache may not be a performance problem. The second reason that performance
would benefit is that we skip potentially expensive tree navigation operations; using
four-way basic mergers is like using two-way basic mergers, except the edges
containing the smallest buffers have collapsed.

On the other hand, leaving two-way basic mergers also means leaving a compiletime
knowledge of how many input streams a basic merger can have; using z-way basic
mergers means we have to be able to handle merging of any number between two and z
streams, since any of the z input streams may have become exhausted.

Let us examine the ways in which we can implement z-way basic mergers. Recall
that a basic_merger implementation keeps a member variable active counting the number
of non-empty input streams. A simple for-loop based extension of the simple_merger
could then look like this:

template<class FwIt, class T, class Comp>
inline Token invoke(FwIt& b, FwIt e, Token outtoken, Comp& comp)
{
 struct ht { typename Stream::pointer h, t; } s[order];
 for(int i=0; i!=active; ++i)
 s[i].h = stream[i]->begin(), s[i].t = stream[i]->end();
 FwIt p = b;
 assert(active > 1);
 while(p != e)
 {
 for(ht *m=s, *q=s+1; q!=s+active; ++q)
 if(comp(*q->h,*m->h))
 m = q;
 *p = *m->h, ++(m->h), ++p;
 if(m->h == m->h) // the input became empty
 {
 outtoken = token[m-s];
 break;
 }
 }
 for(int i=0; i!=active; ++i)
 stream[i]->begin() = s[i].h, stream[i]->end() = s[i].t;
 b = p;
 return outtoken;
}

Pairs of head and tail pointers are kept in an array on the stack. A for-loop finds the
pair m with the head pointing the smallest element. The element is moved to the output
and the head pointer incremented. This implementation is called simple_for_merger. An

96 Chapter 5
Engineering the Algorithms 5.3.4

implementation that, like the two_merger, uses a tight loop merging a minimum number
of elements before recomputing the minimum is also implemented as the for_merger.

In the implementation above, each time we compare to find the smallest head, we do
a double dereference. This can be alleviated by maintaining the value of the head along
with the pair of pointers of that stream. However, this in turn means moving all
elements to a temporary local variable, doubling the total number of elements moves.
This could potentially be expensive when merging larger elements. for_val_merger and
simple_for_val_merger has been implemented that are like for_merger and
simple_for_merger, except they maintain a local copy of the head element.

A problem with all of these solutions is the overhead of the for-loop. While the
stream with the smallest head can be isolated using conditional moves, neither the
compiler nor the processor at runtime have any idea of how many streams we need to
consider. Instead, we could do a switch on active out side the loop. In the switch, we now
know what active is. The implementation simple_comp_merger uses this information as a
template argument that then picks out the smallest head. The templates are illustrated
here:

template<int active>
inline bool move_min(It *head, It *tail, Token *tokens, It out)
{
 if(*head[0] < *head[active-1])
 return move_min<active-1>(head,tail,token);
 else
 return move_min<active-1>(head+1,tail+1,token+1);
}
template<>
inline bool move_min<2>(It *head, It *tail, Token *tokens, It out)
{
 if(*head[0] < *head[1])
 {
 *out = *head[0], ++head[0];
 return head[0] == tail[0];
 }
 else
 {
 *out = *head[0], ++head[0];
 return head[0] == tail[0];
 }
}

and used like this:

switch(active)
{
 case 2:
 …
 case 4:
 for(p!=e; ++p)
 if(move_min<4>(head,tail,token,p))
 break;
 break;
 case 5:
 …
}

 97
5.3.4 Basic Mergers

In move_min<k> a comparison is made to see which of the first or the k-1st stream
contains the larger element. That stream cannot contain the smallest element, so
move_min<k> calls recursively on all but that particular stream. Provided the compiler
inlines the entire recursion, this implementation will do exactly z comparisons per
element merged in a z-way basic merger, and when they are done we know exactly
where on the stack the pointer to the smallest element is. The problem is that the code is
exponential in size and that none of the outcomes of the z comparisons are predictable
nor can they be replaced by conditional moves. A version using minimum
determination like the two_merger has also been implemented and is called comp_merger

Instead of using sequential comparisons, we can also use optimal data structures
such as heaps. The looser_merger is based on a looser tree that only does logz
comparisons and moves [Knu98]. It too has been implemented using templates; when
the looser has been located, we switch on the number of its associated stream. In this
switch, we call a function specialized for that particular stream which then updates the
looser tree.

For the evaluation of the different implementations, we use them in a 120-funnel
with (α,d) = (16.0, 2.0) to merge 1,728,000 elements. We do this eight times and
measure the total time on a physical clock. For reference, we also include the binary
basic mergers from the previous section. Here is the result:

Pentium 4, 512/512

1,0 s

1,2 s

1,4 s

1,6 s

1,8 s

2,0 s

2,2 s

2,4 s

1 2 3 4 5 6 7 8 9 10

Order

W
al

l c
lo

ck
 ti

m
e

comp_merger for_merger
for_val_merger hl_merger
hyb_merger hyb0_merger
hyb3_merger loser_merger
simple_comp_merger simple_for_merger
simple_merger two_merger
four_merger simple_for_val_merger

Chart C-40. Basic mergers, Pentium 4.

98 Chapter 5
Engineering the Algorithms 5.3.4

Pentium 3, 256/256

0,0 s

1,0 s

2,0 s

3,0 s

4,0 s

5,0 s

6,0 s

7,0 s

1 2 3 4 5 6 7 8 9 10

Order

W
al

l c
lo

ck
 ti

m
e

comp_merger for_merger

for_val_merger hl_merger

hyb_merger hyb0_merger

hyb3_merger loser_merger

simple_comp_merger simple_for_merger

simple_merger two_merger

four_merger simple_for_val_merger

Chart C-41. Basic mergers, Pentium 3.

MIPS 10000, 1024/128

0 s

5 s

10 s

15 s

20 s

25 s

30 s

35 s

40 s

0 1 2 3 4 5 6 7 8 9 10

Order

W
al

l c
lo

ck
 ti

m
e

comp_merger

for_merger

for_val_merger

loser_merger

simple_comp_merger

simple_for_merger

hl_merger

hyb_merger

hyb0_merger

hyb3_merger

simple_merger

two_merger

Chart C-42. Basic mergers, MIPS 10000.

Realizing compilers are not always eager to inline functions to the extend we need in
the comp_merger and simple_comp_merger, we manually inlined a simple_comp_merger
with z = 4. This is the four_merger. Since there is no discernible difference in
performance between it and the simple_comp_merger, we conclude that the compiler
does complete the inlining, at least for z = 4.

The charts clearly show there is performance to be gained from increasing z;
however, at some point the performance begins to deteriorate. The optimum value
seems to be either 4 or 5. The overhead of using the optimal loser_merger is too great to
use on these orders. For sufficiently large z, determining the minimum number of
elements merged and merging them in a tight loop is faster than the naïve approach.
This could indicate that it is the small buffers in the tree that largely contributes to the
overhead of this approach.

To some extent on MIPS but in particular on the Pentiums, it is hard to beat the
handcrafted binary mergers. The reason for this is most likely the increased overhead of

 99
5.4.1 Workspace Recycling

making local copies of streams and iterating through them. Why the generalized
simple_comp_merger takes such a performance hit when z = 2, compared to the
simple_merger is not clear; the complier should inline the move_min<2> function and
thus get a merge function identical to that of simple_comp_merger. As with the previous
experiments, here too we must conclude that the simplest implementations are very
good candidates to being the highest performer.

5.4 Funnelsort
Now that we have a high performing funnel in place, we will look into applying it in
the algorithm for which it was designed. The algorithm as it is described in Algorithm
4-5, page 55, does not leave as many options open to the implementation. The analysis
requires it to be recursive so we cannot experiment with the structure of the algorithm.
However, there is a base case for which we need to decide how to sort and there is the
matter of how the output of the merging should be handled. Finally, there is the matter
of the values of α and d. We will first look at how to handle the output and memory
management, introduce two final optimizations, then look at buffer sizes, and finally
settle on the base sorting algorithm.

5.4.1 Workspace Recycling
In multiway mergesort (Algorithm 3-3, page 39), runs were merged using complete
scans; the entire file of elements were read in and a file containing the merged runs was
written to disk. The subproblems are solved in a level-wise order, allowing the reading
and writing of all elements from and to disk at each level. The reason this is optimal is
that the number of levels in the recursion exactly fits with what is possible with the
block and memory sizes, namely O(logM/B(N/B)).

The number of recursions in funnelsort will be higher (O(loglogN)) so we cannot
merge by scanning all elements. We have to follow the recursion and store the output of
one recursive call before we recurse to the bottom of the next problem and we cannot
simply keep a file for each level in the recursion. One simple solution would be to, for
each recursive call, allocate a buffer the size of the subproblems in that call, around
α1/dNd-1/d elements. Each recursive sort would then put their output into that buffer and
when the recursive sort was done, the elements of the buffer would be copied back into
the original array. In this approach, providing the output space for the mergesort is left
to the caller, making the interface look essentially like the std::copy STL function:

template<class Merger, class Splitter, class RanIt, class OutIt>
OutIt mergesort(RanIt begin, RanIt end, OutIt out);

The body would consist of allocating the temporary buffer and a number of recursive
calls, each followed by a call to std::copy, to free the temporary buffer.

The problem with this approach is that all elements are merged to a buffer and
copied back. That is one more move per element than need be made. We can do better
than that, observing that when we have made the first recursive call, all the elements
from that subproblem are now in the temporary buffer. That leaves a “hole” in the
original array just big enough to hold the output of the next recursive call. When all the
recursive calls have completed, the hole have moved to the end of the array. We then

100 Chapter 5
Engineering the Algorithms 5.4.2

do the only move of elements, namely from the buffer to the end of the array. The
process is illustrated in Figure 5-8. Using this procedure saves us a considerable N-
α1/dNd-1/d element moves.

Figure 5-8. The merge procedure used in funnelsort. The thick arrows

indicate sorting output while the thin arrow indicates a move.

In each recursive call, we need the temporary buffer and a k-funnel, but not both at
the same time. Using the stack_allocator, described in Section 5.3.2, we can first
compute which of the two takes up most space, construct a stack_allocator large enough
to hold either of them, allocate the buffer, sort recursively, move the buffer elements
back into the array, deallocate the buffer, and then layout the funnel using that
allocator. This way, the funnel is laid out in exactly the memory locations the
temporary buffer occupied. Recycling the workspace like this, will likely mean that the
funnel is already in cache when it is needed.

5.4.2 Merger Caching
As with any function, at each recursive call a new set of local variables are allocated
and constructed on the execution stack. This is normally not much of a performance
issue, but if one of those variables is a funnel, having to allocate and construct it at each
recursive call may soon become a performance issue.

In fact, constructing a new funnel at each recursive call is far from necessary. In all
calls at the same level of recursion, we use a funnel of the same order, so instead of
using a funnel local to the merge_sort function, we start out by simulating the recursive
calls of the merge_sort function and at each level noting the order of the funnel needed.
A funnel is then allocated for each level and they are in turn used in the recursive calls.
For the simulation, we are only interested in the levels of the recursion and so could do
with a single tail-recursive call, easily converted to a loop.

Using this scheme, we can only apply workspace recycling at the root of the
recursion, but since that will dominate the rest of the recursion, both in workspace
consumption and memory transfers, this will also be where we gain the most.

We have implemented the funnelsort algorithm both with and without merger
caching to asses whether pre-computing the total space needed throughout the
algorithm will be a considerable overhead, or constructing a new funnel in each call
will hurt performance. The premise of using workspace recycling was that the funnel
used the same stack based allocator as used to allocate the temporary buffer. However,
since we deallocate the buffer just before we start allocating the funnel, using a heap
allocator could achieve the same effect, if the allocator chooses to allocate from the
newly freed area. At the same time, using a heap allocator may be slower than the
stack_allocator, due to the complexity of managing a general heap, thus shifting the
performance in favor of using merger caching.

 101
5.4.2 Merger Caching

We have tested the two versions of funnelsort with both a stack_allocator and a heap
allocator. For this test we use α = 4, d = 2.5, and the simple_merger basic merger (z = 2).
We use the std::sort provided with STL to sort subarrays smaller than αzd = 23. We sort
uniformly distributed pairs. The result is as follows:

Pentium 4, 512/512

90%

95%

100%

105%

110%

115%

120%

1000000 10000000 100000000 1000000000

Elements

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

Cached heap
Cached stack
Not cached heap
Not cached stack

Chart C-43. Effects of merger caching, Pentium 4.

Pentium 3, 256/256

90%

92%

94%

96%

98%

100%

102%

104%

1000000 10000000 100000000

Elements

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

Cached heap
Cached stack
Not cached heap
Not cached stack

Chart C-44. Effects of merger caching, Pentium 3.

102 Chapter 5
Engineering the Algorithms 5.4.2

MIPS 10000, 1024/128

93%

94%

95%

96%

97%

98%

99%

100%

101%

102%

100000 1000000 10000000 100000000

Elements

R
el

at
iv

e
w

al
l c

lo
ck

 ti
m

e

Cached heap
Cached stack
Not cached heap
Not cached stack

Chart C-45. Effects of merger caching, MIPS 10000.

We saw in Sections 5.3.2 and 0 that the different architectures preferred different
allocators. We see the same picture here. We do however see a more consistent picture
here; all architectures clearly prefer the mergers to be cached. We suspect that this is
mostly due to avoiding the computational overhead of constructing mergers in each
recursive call. There is only slight evidence of savings due to increased locality, by
recycling workspace and using std::allocator, as can be seen here in the number of TLB
misses:

MIPS 10000, 1024/128

0,7

0,75

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

100000 1000000 10000000 100000000

Elements

R
el

at
iv

e
TL

B
 m

is
se

s

Cached heap
Cached stack
Not cached heap
Not cached stack

Chart C-47. Effects of merger caching, MIPS 10000, TLB misses.

The effect of reusing mergers is dwarfed by the effect of using stack_allocator. As
discussed, using the stack_allocator allows us to reuse the temporary buffer for laying
out the funnel. When we recycle the workspace like this, we effectively recycle virtual
memory addresses, in turn keeping the translation look-aside buffer entries alive longer.
This reduction in TLB misses does not affect the overall execution time significantly,

 103
5.4.3 Base Sorting Algorithms

however. We should use both merger caching and controlled allocation to reduce the
construction overhead and increase overall locality.

5.4.3 Base Sorting Algorithms
As an improvement to quicksort, Sedgewick introduced the idea of not completing the
quicksort recursion, but stop before problem sizes got too small [Sed78]. This would
leave the elements only partially sorted. To sort it fully, insertion sort was used in a
final pass. What made it efficient was the special property of insertion sort, that if no
element is more than c places from where is should be in the sorted sequence, insertion
sort can sort all n element using no more than O(cn) moves and comparisons [Knu98].
Ladner and LaMarca have since proposed that the insertion sort should be done at the
bottom of the recursion rather than as a final pass, since a final pass would incur N/B
additional memory transfers [LL99]. As a side effect, the special property of insertion
sort is no longer needed; any low instruction count sorting algorithm can be used.

With funnelsort, we are faced with a similar situation – below a certain problem size,
we have to switch to a different sorting algorithm, simply because no funnel can merge
such small streams. We choose to switch to another algorithm when problem sizes
becomes smaller than αzd, because that in turn will make funnelsort choose at least a
z+1-funnel, that is a funnel of greater than one height, on all inputs sorted by funnelsort.
This avoids the need to handle the special case, where the root of a funnel is also a leaf.

The choice of sorting algorithm for the base is not clear. Insertion sort as proposed
by Sedgewick performs O(n2) moves in the worst case; however, it performs much
better when applied to data that is almost sorted. Indeed, it naturally detects completely
sorted sequences with only O(n) comparisons and uses no moves at all. A very low-
overhead alternative to insertion sort is selection sort [Knu98, Algorithm S]. A
compelling feature of selection sort is that for each position in the sequence, the correct
element is located and then moved there; it only moves an element once. However, it
does O(n2) comparisons even in the best case.

The limitation of insertion sort is that most elements are never moved more than one
position. Shell sort attempts to remedy this by doing several passes of insertion sort,
first only on elements far apart, then on elements closer and closer to each other
[Knu98, Algorithm D]. It has a higher overhead but will asymptotically perform fewer
operations per element. Considering that modern processors are super-scalar and
capable of executing several instructions in parallel, it is only natural to investigate
sorting algorithms that are not inherently sequential. One such algorithm is Batcher’s
merge sort [Knu98, Algorithm M]. Similar to Shell sort, Batcher’s sort uses several
passes, each sorting elements closer and closer together. The difference is that the
sequence of comparisons in Batcher’s sort is such that they can be executed in parallel.
Modern processors may be able to detect and exploit this. The downside is that
computing the sequence gives this algorithm a considerable overhead. Heapsort is a
special kind of selection sort, where each element is selected in O(logn) moves and
comparisons, making it an asymptotically optimal sorting algorithm.

These algorithms were implemented and run on small arrays of uniformly
distributed random pairs. We measure the wall clock time it takes to sort a total of 4,096
such pairs. For this test, we had the unique opportunity to run on an Intel Itanium 2-
based computer. The Itanium class of processors uses so-called explicit parallelism.
This means that when the compiler issues instructions, it will bundle them in

104 Chapter 5
Engineering the Algorithms 5.4.3

instructions capable of being executed in parallel. This is opposed to RISC and CISC
architectures, where instructions are emitted by the compiler as sequential as they
should be executed and the compiler is not concerned with what instructions can be
executed in parallel. It will then attempt to extract any parallelism. Another side of the
Itanium architecture is the heavy use of conditional execution; all instructions can be
executed conditionally and on any of 128 predication bits. The results are as follows:

Pentium 4, 512/512

0 s

1 s

2 s

3 s

4 s

5 s

6 s

7 s

10 20 30 40 50 60 70

Elements

W
al

l c
lo

ck
 ti

m
e

insertion
selection
heap
shell
batcher's
stdsort

Chart C-48. Base sorting algorithms, Pentium 4.

Pentium 3, 256/256

0 s

2 s

4 s

6 s

8 s

10 s

12 s

14 s

16 s

10 20 30 40 50 60 70 80

Elements

W
al

l c
lo

ck
 ti

m
e

insertion
selection
heap
shell
batcher's
stdsort

Chart C-49. Base sorting algorithms, Pentium 3.

 105
5.4.3 Base Sorting Algorithms

MIPS 10000, 1024/128

0 s

10 s

20 s

30 s

40 s

50 s

60 s

10 20 30 40 50 60 70

Elements

W
al

l c
lo

ck
 ti

m
e

insertion
selection
heap
shell
batcher's
stdsort

Chart C-50. Base sorting algorithms, MIPS 10000.

Itanium 2, 2048/4096

0 s

2 s

4 s

6 s

8 s

10 s

12 s

14 s

10 20 30 40 50 60 70

Elements

W
al

l c
lo

ck
 ti

m
e

insertion
selection
heap
shell
batcher's
stdsort

Chart C-51. Base sorting algorithms, Itanium 2.

For the test on the Itanium, we used the Intel C++ compiler version 7. This compiler
comes with the Dinkumware implementation of the STL. This particular
implementation features an std::sort function that like the SGI implementation is based
on introsort. However, for the partitioning, a more robust function is used than in the
SGI implementation. This function does a so-called Dutch flag partition, collecting
elements that are equal to the partition element between the two partitions.
Furthermore, it uses a sophisticated rotate function in the implementation of insertion
sort used in the bottom of introsort. In all, while it makes the implementation faster on
certain inputs, it clearly makes it slower on the sets we tested. The switch to insertion
sort is std::sort can clearly be seen. In the SGI implementation (perhaps most clear on
the Pentium 3 results) the switch happens at 16 elements, while in Dinkumware, it
happens at 32 elements. Sedgewick originally suggested a switch around 9 or 10
elements; however, we see here that insertion sort remains competitive at least up in the
20’s, even 40’s on the Pentium 4, at least when sorting uniformly distributed pairs.

106 Chapter 5
Engineering the Algorithms 5.4.4

Selection sort is apparently too hampered by its best-case O(n2) comparison count to
be competitive. Comparing selection sort to insertion sort, we can see that insertion sort
is indeed significantly faster than its O(n2) worst-case time. Eventually, however,
insertion sort will loose to all but selection sort. The optimal heapsort is quite
competitive on all architectures and most problem sizes, while some architectures
prefer Shell sort more than others.

Most interesting is perhaps Batcher’s sort. On Pentium 3 and MIPS, its performance
is in the mid-range, for the most part performing worse than Shell sort does. However,
on Pentium 4, it performs better than Shell sort performs and is even able to keep up
with heapsort. On the Itanium, however, it outperforms all other algorithms, being
almost twice as fast as heapsort. This indicates that as processor performance get more
and more dependant on instruction level parallelism, more and more performance can
be gained when using sorting algorithm that allow for such parallelism.

As suspected, at least on the more traditional architectures, no algorithm can beat the
hybrid and highly optimized approach of introsort.

5.4.4 Buffer Sizes
Finally, the implementation details of the complete funnelsort are in place. Without
further ado, here are the results of sorting using funnelsort with different values of α
and d:

Pentium 3, 256/256
16,000,000 elements

0 s

5 s

10 s

15 s

20 s

25 s

30 s

35 s

40 s

45 s

50 s

0 5 10 15 20 25 30 35 40 45
α

W
al

l c
lo

ck
 ti

m
e

d = 1.5

d = 2.0

d = 2.5

d = 3.0

Chart C-55. Buffer parameters, sorting 16,000,000 elements on Pentium 3.

 107
5.4.4 Buffer Sizes

MIPS 10000, 1024/128
3,700,000 elements

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45
α

W
al

l c
lo

ck
 ti

m
e

d = 1.5

d = 2.0

d = 2.5

d = 3.0

Chart C-58. Buffer parameters, sorting 3,700,000 elements on MIPS.

The test was conducted for three different array sizes on each machine, all of which
fit in main memory. As suspected, when decreasing the values of α and d, fewer
elements are merged per call to fill, and the overhead of navigating the tree and
managing buffers become significant. With α > 4 and d ≥ 2, we can see that this
overhead is virtually gone. Maximal performance is reached around α = 16 and d = 2.5.

Choosing α and d is not as simple as the above two charts imply, however. The
choice of values influences both the order of the funnel used and the space needed to
hold it. To expose these effects, one of the array sizes were chosen close to what can fit
in RAM. The results are as follows:

Pentium 3, 256/256
26,000,000 elements

0 s

20 s

40 s

60 s

80 s

100 s

120 s

140 s

160 s

0 5 10 15 20 25 30 35 40 45
α

W
al

l c
lo

ck
 ti

m
e

d = 1.5

d = 2.0

d = 2.5

d = 3.0

Chart C-57. Buffer parameters, sorting 26,000,000 elements on Pentium 3.

108 Chapter 5
Engineering the Algorithms 5.5.1

MIPS 10000, 1024/128
5,100,000 elements

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45
α

W
al

l c
lo

ck
 ti

m
e

d = 1.5

d = 2.0

d = 2.5

d = 3.0

Chart C-59. Buffer parameters, sorting 5,100,000 elements on MIPS.

Two effects are dominating. One, if we choose d small, we will need a very high
order funnel, and since d > 1, the total space consumed by its buffers are super linear.
The total space needed for the algorithm then becomes too much to fit in memory. On
the other hand, when the values of α and d are increased, the funnel it self will require
more space and even though a lower order funnel is used, the size of the funnel is again
too much for it to fit in RAM.

For any choice of values of α and d, the algorithm will require space for the funnel
and for some array size this particular choice will make the total space requirements of
the algorithm too high for it to fit in cache. The point is that we should avoid extreme
values of α and d, since it will cause extreme space requirements of the funnel; it may
be tempting to choose high values of α and d to minimize the overhead; however, doing
so may cause the algorithm to incur memory transfers on smaller arrays than had we
chosen more sensible α and d.

5.5 LOWSCOSA
The primary components of the LOWSCOSA are partitioning and merging with
funnels. With a high performance funnel, already in place this leaves partitioning,
which we will look at in this section. At the end of the section, we will briefly discuss
what performance to expect from the LOWSOSA.

5.5.1 Partitioning
Partitioning elements of an array consists of two phases: median finding and
partitioning. The partitioning phase uses the median as a pivot element and during a
single scan moves elements that are larger than the pivot to one side and elements that
are smaller to the other side. The exact median can also be found in linear time
[BFP+73].

For algorithms like quicksort, we are not required to partition into two equally large
partitions. For those algorithms, we thus do not have to use the exact median as the
pivot; we can make due with an approximate median. Such a median can be computed

 109
5.5.2 Strategy for Handling Uneven Partitions

as the exact median of a small sample of elements instead of all elements. Popular
sample sizes for quicksort are three and nine [Knu98], even n [MR01]. The effects
of this is that virtually no time is spend finding the median and thus only the
partitioning contributes to the linear term in the complexity. A downside is that we risk
making uneven partitions where one part not much smaller than the original array. This
can mean that the time spent partitioning is largely wasted. In quicksort, however, even
with a sample size of one, that is we use a predetermined element as the approximate
median, on uniformly distributed elements the expected running time is only a small
constant larger than what could be achieved if we new the exact median in advance
[Knu98].

In the interest of performance, we would like to use an approximate median for the
LOWSCOSA also. The consequences of the resulting uneven partitions are however
not as trivial as in the case of quicksort. If we partition such that there are more small
elements than large elements, the output of the merger cannot fit in the space originally
occupied by the large elements (see Figure 4-3, page 58). This is a design problem in
the algorithm that needs to either be solved or avoided. This means that we cannot hope
to generate more sorted elements than there are elements in the smaller of the two
partitions at each iteration of the LOWSCOSA. Furthermore, if we go ahead, sort the
large number of small elements for the input to the funnel, and only output a small
number, we have wasted a considerable time sorting them.

5.5.2 Strategy for Handling Uneven Partitions
Before we look at how to handle the case of an uneven partition, we make the following
observation. It is possible to combine the partition phase with the sorting of the
subarrays to be merged in the current call; during the partitioning, when we have
moved a sufficiently number of small elements to the end of the array, we put the
partition on hold and sort them. This way, when these subarrays are small enough to fit
in cache, we can complete the partition phase and the following sorting phase incurring
only N/B memory transfers instead of up to 3N/(2B). We consider this an important
optimization in the interest of increasing locality and cache usage.

Repartition
The simplest strategy is perhaps to perform the partition using the approximate median.
When that is done, if more than half the elements we partitioned as smaller than the
median, we simply pick a new median and partition again. An improvement is to only
partition the small elements. This will take less time and more likely generate a
partitioning with fewer small elements than large.

However, this approach makes it infeasible to sort streams while partitioning,
because we risk having to repartition and thus make the sorting a wasted effort. In
addition, we would expect every other partition to generate more small elements than
large, so repeating the partitioning every time that happens will generate a considerable
overhead.

Abort on Empty Refiller
Instead of repartitioning, thus avoiding the problem of outputting too many elements,
we can continue with the uneven partition and handle the problem explicitly. The
problem can be solved by giving the refiller a way to abort the merging. It would then

110 Chapter 5
Engineering the Algorithms 5.5.2

do so just before it begins reading into the part containing small elements. The situation
is depicted in Figure 5-9. This will leave a “hole” in the input between the output and
the refiller. The hole is patched with the elements contained in the funnel and included
in the recursive call.

Figure 5-9. The refiller has no more large elements.

This scheme avoids a second partitioning and allows us to sort the input streams
during the partitioning; however, it is flawed in the case of extremely few large
elements. In these cases, the buffers in the funnel will not be filled and not a single
element output. The refiller reads in all large elements before a single element is output
from the funnel. In these extreme cases, we would have to fall back on the
repartitioning scheme or employ some other special-case handling scheme.

Abort on Full Output
To remedy the fault, we may continue the merging until we have filled the left side of
the array with small elements. To avoid the refiller starting to read in parts of the sorted
streams, potentially duplicating elements, we need to detach it from the funnel. We
have to keep the input streams attached so the funnel keeps reading the small elements.
When the output has filled the left side, some elements are both in the input streams
(the space they occupied was not refilled) and in either the funnel or in the output. In
essence, the hole from the previous scheme is now scattered in all the input streams.
Like before, we fill these holes with the elements remaining in the funnel.

Merge Big Elements
Perhaps the most elegant approach is to make input streams of the elements in then
smallest of the partitions, not necessarily of the small elements. If the smallest of the
partitions contain large elements, we use a funnel that outputs large elements first and
writes them from the end of the array to the beginning. The process is illustrated in
Figure 5-10. Note that the output and input of the funnel is now written and read in
reverse direction.

 111
5.5.3 Performance Expectation.

Figure 5-10. The process of multiway merging when there are more small

elements than large element after the partition.

In our implementation, we have chosen to detach the refiller when it hits the small
elements and to sort the streams while partitioning. This means that if we do an uneven
partition, we may have sorted streams containing many more elements than the number
of elements sorted by the end of an iteration. To reduce the risk of that happening, we
have increased the sample size to 31 elements. We sort this sample and use the 17th
smallest as the partition. Using a larger element than the 15th smallest reduces the risk
of partitioning more small elements than large elements.

5.5.3 Performance Expectation.
When looking at the virtual memory level of the memory hierarchy, we have argued
that for all sensible input sizes neither multiway mergesort nor funnelsort will do more
than 4N/B memory transfers. The LOWSCOSA will unfortunately do more than that.

Under the assumption that an entire input stream of the funnel can fit in memory, the
partitioning and sorting of input streams can cause up to 2N/B. The funnel will read in
and write out half the elements for a total of N/B memory transfers. However, by now
only half the elements are sorted, assuming partition into equally many large and small
elements. The algorithm will continue on arrays of geometrically decreasing sizes,
effectively doubling the the number of memory transfers. The total number of memory
transfers will be largely dominated by those incurred at the first iterations, so when N is

112 Chapter 5
Engineering the Algorithms 5.5.3

significantly larger than M, the fact that the last logM iterations can be performed
without incurring memory transfers has little influence.

Thus, the total number of memory transfers incurred under these assumptions could
be as high as 6N/B. With an input occupying 2GB and half a gigabyte of RAM, the first
two iterations incur the full number of memory transfers, while after the partitioning
phase of the third iteration the rest of the algorithm activity is within RAM. This gives a
total of (3+(3/2)+2/4)N/B = 5N/B memory transfers, only slightly less than quicksort on
the same input size and under more realistic assumptions (see Section 3.2.4).

In addition to added memory transfers, the LOWSCOSA also has an increased
instruction count; each time an element is read into the funnel, another element is
moved in its place. This will, in turn, almost double the total number of element moves
performed. The number of comparisons is also increased, since before an element is in
its right place, it has participated in a partitioning and a merge, as well as the recursive
sorts. Furthermore, the LOWSCOSA requires O(logn) funnels to be constructed as
opposed to funnelsort requiring O(loglogn) funnels.

In all, the expectation of the performance of the LOWSCOSA does not look good. It
is however optimal in the cache-oblivious model and the fact that it requires low order
working space is for us reason enough to investigate its performance.

