
 131

Chapter 7

Conclusion

In this thesis, we set out to produce a high performing cache-oblivious sorting
algorithm in part to clarify the feasibility of cache-oblivious algorithms in the context
of sorting.

This feasibility is not a given. Cache-oblivious algorithms are proven optimal in the
memory hierarchy using assumptions that appear unrealistic. Not before an
implementation of the algorithms has been created and thoroughly analyzed
experimentally, will it become clear whether these assumptions are indeed unrealistic,
or cover for aspects of the realities of modern day hardware that are important for
achieving high performance. Furthermore, optimal cache-oblivious sorting algorithms
are more complex and require more instructions to be executed per element sorted.
Thus, it is unclear whether this increased complexity will cause the algorithm to
perform badly despite any improvement in cache utilization. Again, only an
experimental analysis of the algorithms will provide a clear answer.

Realizing that space consumption is of great importance when working with large
datasets, we have developed a novel low-order working space cache-oblivious sorting
algorithm, LOWSCOSA. It has optimal complexity and uses sub-linear working space
to sort elements, keeping them in the array in which they are stored.

We have provided an implementation of the cache-oblivious sorting algorithm
funnelsort and an implementation of the LOWSCOSA.

Using a detailed knowledge of the inner workings of both compilers, modern
processors and modern memory systems, we build an understanding of what
ingredients are needed in a high performance cache-oblivious sorting algorithm. We
have used a process of thorough experimentation to determine exactly which
ingredients improve performance in practice. Through this process, many good ideas
were tried out in practice. However, only very few proved able to yield improvements
in performance. Though it may seem unfortunate that we were unable to improve
performance, using approaches that are more sophisticated, it is indeed not. By showing
that performance does not improve significantly when using complex solutions, we
have also shown that the simplest implementation of these algorithms will likely be as
fast as or even faster than solutions that are more complex. That fast implementations
of algorithms can be created using only simple techniques, is important for the spread
and acceptance of the algorithm.

In particular, we have shown both theoretically and in practice that perhaps the most
complex aspect of the algorithms, namely the controlled layout, is of minimal
importance for performance.

132 Chapter 7
Conclusion 6.3.2

This thesis breaks new ground by proving that implementations of cache-oblivious
sorting algorithms can have performance comparable or even superior to popular
alternatives. We have provided evidence that the assumptions, such as full associativity,
made to argue optimal utilization of cache, is no hindrance to achieving high cache
utilization. Indeed, we have shown that cache-oblivious algorithms can exploit the
caches even better than algorithms tuned for the cache and in turn achieve higher
performance.

We have also shown that these results are consistent through several different types
of input and on several radically different hardware architectures.

However, our cache-oblivious algorithms are not able to outperform algorithms
designed and implemented specifically to be efficient in handling disk accesses.

7.1 Further Improvements of the Implementation
We believe the performance of our implementations can be further improved. Our
implementation is build as a set of clear-cut abstractions. This was done to ensure
modularity, enabling us to try out different pieces of code in the same contexts.
However, the compiler may not be able to see through all of these abstractions, making
it hard for it to generate optimal code.

Now that we have determined what pieces of code yield high performance, this
structure of abstractions is no longer needed. We believe, implementing the algorithms
from scratch using these pieces of code but without the abstractions, will yield a higher
performing implementation.

We believe that to achieve the performance levels of algorithms designed and
implemented for efficient handling of disk accesses, either the I/O of the operating
system need to be reworked, or cache-oblivious algorithms need to begin utilizing the
same techniques. These techniques include double buffering and prefetching. Using
such techniques would likely also result in a faster implementation.

7.2 Further Work
When using constant sized samples for finding medians for use in partitions, we risk
making uneven partitions. For performance reasons, we cannot afford to find the exact
median in the LOWSCOSA. This in turn means that in practice, we run the risk of
quadratic complexity. To make the LOWSCOSA more compelling, we need to find a
way to guarantee worst-case optimality in practice.

Depending on the choice of parameters used in the algorithm, the LOWSCOSA still
consumes a significant amount of additional memory. We would like to see this amount
reduced to a logarithmic term or perhaps constant.

The LOWSCOSA does not have competitive performance in practice for large
datasets. It incurs 6N/B memory transfers, where only 4N/B is needed. We would like to
see a variant of the LOWSCOSA that also had a competitive performance on large
datasets.

Still only very little work has been done in the experimental study of cache-
oblivious algorithms. A lot more ground needs to be covered. It is the hope of the
author that this thesis will help pave the way for more work to be done in this area.

