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Chapter 4  

Cache-Oblivious Sorting Algorithms 

As Frigo et al. presented the novel model of cache-oblivious computing they also 
presented a host of optimal cache-oblivious algorithms and data structures [FLPR99]. 
Aside from Fast Fourier Transformation, Matrix Multiplication, and Matrix 
Transposition they presented two optimal sorting algorithms. Both are in essence 
cache-oblivious variants of the two sorting algorithms presented in the previous 
chapter. What follow is a thorough presentation of cache-oblivious merge sort, dubbed 
funnelsort. 

4.1 Funnelsort 
The cache-awareness of multiway merge sort is twofold; initial runs are of size M, and 
in merges runs with an M/B-merger. 

In multiway mergesort, we could simply implement the merger using a binary heap, 
or an equivalent, as a priority queue; but without knowing M or B, we do not know what 
size it should be, nor do we know if it can even fit in cache. If a binary heap, for 
instance, cannot fit in cache, its I/O performance decreases drastically. Hence, we need 
a merger structure that, no matter what M is, can merge efficiently. The key to this is, as 
with binary searching, recursion, albeit in a slightly different form. However, simply 
adapting the layout of a binary heap turns out to be insufficient; indeed constructing an 
I/O optimal heap is non-trivial. Fortunately, we do not need to go so far. 

4.1.1 Merging with Funnels 
The cache-oblivious equivalent of a multiway merger is a funnel. A k-funnel is a static 
data structure capable of merging k sorted input streams. It does so by merging kd 
elements at a time, for some d > 1. It is arranged as a tree, with two notable features: it 
is stored recursively according to the van Emde Boas layout, with the top and bottom 
trees them selves being (sub-) funnels; secondly, along each edge, it keeps a buffer. 
Intuitively, we need such buffers to amortize the cost of using a (sub-) funnel, in case it 
is so big it cannot be operated with a constant number of memory transfers. 

Despite it being a rather young data structure, the funnel has already undergone a 
couple of changes. After its introduction in 1999 along with funnelsort, Brodal and 
Fagerberg [BF02a] presented a conceptually simpler version, dubbed lazy funnelsort, 
and in this thesis, we will introduce further simplifications. It seems natural to describe 
the original funnel and then introduce the modifications, to establish an intuition of why 
the structure is optimal. The analysis will follow the final modifications. 
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The Eager Funnel 
The original k-funnel1 merged k3 elements at a time. It consists of k  k -funnels L0, 
L1, …, 1kL − , at the bottom, each connected to a k -funnel R, at the top, with edges, 
that contain buffers, B0, B1, … 1kB − . We will discuss the case of non-square orders 
below. The buffers doubles as both the output of the bottom funnels as well as input for 
the top funnel. Figure 4-1, shows a 16-funnel consisting of five 4-funnels and four 
buffers. At the base of the recursion, at the nodes of the tree, we have constant sized 
binary or ternary mergers. Note, that a k-funnel in it self does not have input or output 
buffers, though it may sometimes be convenient to conceptually include e.g. an output 
buffer in a funnel. The funnel is stored at contiguous locations in memory, according 
the van Emde Boas layout: first, the top tree is laid out recursively, immediately 
thereafter comes B0 followed by a recursive layout of L0 followed by B1 and so on. 

 
Figure 4-1. A 16-funnel with its 16 input streams. 

To operate a funnel, we use a recursive procedure invoke, illustrated in Algorithm 
4-1. It reads a total of k3 elements form the funnel’s sorted input streams, and output k3 
elements in sorted order. For the amortization argument to work, there must initially be 
at least k2 elements in each input buffer, but as the merging progresses, there will be 
fewer and fewer elements in the input. If at some point a (sub-) funnel cannot fulfill the 
obligation to output k3 elements, due to insufficient input, it outputs what it can, is 
marked exhausted, and will not be invoked again. This is done to avoid futile descends 
into bottom funnels, that may not produce enough elements. There will be at most one 
invocation, per funnel, that outputs less k3 than elements, so it will not influence the 
asymptotic analysis. 

                                                 
1 ... was originally called a k-merger, but since a merger, at least in my mind, is a broader class of data 
structures, I will use the term k-funnel for this kind of merger. 
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Algorithm 4-1. invoke(k-Funnel F) 

if k is 2 or 3 then 
 merge “manually”  
else 
 repeat k3/2 times do 
  for each buffer Bi, 0 ≤ i < k do 
   if Bi less than half full and Li is not exhausted then 
    invoke(Li) 
  invoke(R) 
 od 
fi 
if less than k3 elements was output then 
 mark F exhausted 

The recursion of invoke follows the layout; when a funnel is invoked, it invokes the 
top funnel k3/2 times, each time contributing k3/2 elements to the output, for a total of k3 
elements. Before each invocation, however, it checks whether there are enough 
elements in the buffers (the input of the top funnel) and for each buffer with less than 
k3/2 elements, it invokes the bottom funnel with that particular buffer as its output. For 
this to work, the buffers are implemented as FIFO queues and have a capacity of at 
least 2k3/2. In Figure 4-1, each of the four buffers has a capacity of 128 elements. This 
will insure that if there are at most k3/2 elements there is room for an additional k3/2, 
while at the same time guarantee that there will be enough elements to output k3/2 
elements, even in the extreme case the elements to be output all come from the same 
input stream. 

It can be proven (see Section 4.1.2 below) that a k-funnel takes up O(k3) contiguous 
memory locations. So, intuitively, the reason the funnel works is that we may have to 
“pay” the memory transfers to get it going (about O(k2/B)), but we get Ω(k3) elements 
out of it (paying a total price of Ω(k3/B)). Additionally, if the funnel is too big to fit in 
cache, regardless of its size, there will be some level of the van Emde Boas recursion, at 
which the subfunnel will fit in cache. For that level, the previous argument applies, and 
as it turns out, there are not too many levels. 

The above description may seem as a simple way of merging; however, there a 
couple of inherent practical problems. Most severe is perhaps the subtle dependencies 
between the buffer sizes and the order of both the top and bottom funnels. Given that 
we in practice cannot split a k-funnel into k -funnels, simply because k may not be 
square, we run into rounding issues: The standard way of avoiding rounding problems 
would be to choose k as the smallest order that ensures only square funnels throughout 
the funnel. This order however is one that gives the tree a power-of-two height, that is, 
it needs to be of order power-of-power-of-two, which would make the funnel too big in 
the worst case. So a k-funnel is in general comprised of j k    -funnels and 
( )k j  −   k    -funnels (perhaps one less) aside from the top funnel, for some j ≤ 

k    . Now the buffers may be too small either to hold the output of a bottom funnels or 
to ensure enough elements for the top funnel. A solution to this problem is, after the 
order of the top and bottom funnels have been determined, the i’th buffer should be of 
size 2mi

3/2, where mi is at the maximum of the order of the i’th bottom funnel and the top 
funnel. But now a single invoke of a bottom funnel will not insure, that the buffer is at 
least half filled, so the algorithm need to sometimes do more than a single invoke. 
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In addition, the apparent simplicity of the merging phase may be deceiving; we have 
explicitly made certain prior to the invocation of any funnel, that there will be enough 
elements in the input to produce the output and may merge k3 elements, without 
checking the state of the buffers. This is false. The issue of exhaustion cannot be 
controlled, because it depends on the input, so any subfunnel may at any time become 
exhausted and its output buffer only be partially filled. The funnel that uses this buffer 
as input has to consider this, in effect making it paranoid, always checking to see if 
there indeed are more elements. 

Aside from these concerns, there is the practical issue of doing the actual layout. 
While doing a van Emde Boas layout of a binary tree with fixed-sized and -typed nodes 
may be trivial, doing it with variable sized buffers and mixed data types is not. Suffice 
it to say, that on some hardware architectures, certain data types cannot be placed at 
arbitrary memory locations. This is known as alignment. For example, a double 
precision floating-point number may only be addressed, if it is placed at addresses 
divisible by eight, while an integer can be at any address divisible by four. If we were 
to merge doubles with a funnel, we would have to lay out buffers capable of containing 
doubles intermixed with nodes containing pointers and Booleans. Say a node consists 
of six pointers of four bytes each and a byte for the exhausted flag, for a total of 27 
bytes. Now we cannot simply place a buffer, a node, and then another buffer 
contiguously. Simply using four bytes for the exhausted flag does not help. To make 
matters worse, to our knowledge, no language supports a simple way of determining 
alignment requirements of data types. 

The Lazy Funnel 
Many of these issues were eliminated with the introduction of the lazy funnel [BF02a]. 
The modification lies primarily in the operation of the funnel. The lazy funnel generates 
the output of bottom funnels lazily, in the sense that they are invoked as needed, when 
there are no more elements in the buffers, as opposed to explicitly checking the state of 
the buffers and then perhaps invoking a bottom funnel. This means, in turn, that there is 
no longer operationally a need to follow the layout in the recursion, and thus no need 
for a notion of top and bottom funnels; all base funnels (the binary and ternary mergers) 
are invoked the same way, through a procedure called lazy_fill, illustrated, for a binary 
node, in Algorithm 4-2. Note that if one of the children is exhausted, the corresponding 
input may not contain any elements so the head of that input may be undefined and 
should be ignored or taken to be the largest possible element. 
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Algorithm 4-2. lazy_fill(Node v) 

while v’s output buffer is not full do 
 if left input buffer empty and left child of v not exhausted then 
  lazy_fill(left child of v) 
 if right input buffer empty and right child of v not exhausted then 
  lazy_fill(right child of v) 
 if head of left input < head of right input then 
  move head of left input to output 
 else 
  move head of right input to output 
od 
if left input buffer empty and left child of v exhausted and 
  right input buffer empty and right child of v exhausted then 
 mark as v exhausted 

This allows for two structural simplifications: the lazy funnel is now simply a 
balanced binary tree, no mix of binary and ternary mergers. Secondly, there are no 
subtle dependencies between the size of the buffers and the funnels using them as input 
or output. The storing of the funnel is still done according to the van Emde Boas layout 
as are the capacity of the buffers still a function of the order of the subfunnel that has it 
as its output. The shape of the function, however, now only has an analytical 
significance, so we are free to choose from a larger class of functions. The analysis was 
originally carried out with k-funnels generating output of size kd, with d ≥ 2. 

These simplifications have since paved the way for the use of the funnel data 
structure as a key element in many cache-oblivious algorithms and data structures, such 
as the distribution sweeping class of geometrical algorithms [BF02a] and the funnel 
heap [BF02b]. The many uses of the funnel underline the need for good solid 
implementation. 

Two-Phase Funnel 
The practical issues that remain in the lazy funnel are the special attention to the 
exhaustion flag and the complex layout. The two-phase funnel resolves these issues. As 
for the latter, it is simply not needed; the two-phase funnel does not care about the 
layout. As with the lazy funnel, the van Emde Boas recursion is still used for 
determining the capacity of the buffers, so the layout of the original funnel structure is 
not completely gone. With the two-phase funnel, the use of controlled layout is 
optional. Whether it influences performance in practice will be investigated in Chapter 
6. 

As for the former, we first look at scheduling of the nodes. It would seem that the 
merging proceeds until either the output is full or exactly one of the node’s inputs is 
empty, in which case lazy_fill is called on the corresponding child. There are exactly two 
cases, where this is not true. One is in the initial funnel, where all buffers are empty. 
Invoking lazy_fill on the root will not merge until one input is empty, simply because 
both are empty. The other case is when the last time lazy_fill was called on it, the node 
below an input, was exhausted and could thus not produce any elements. This is 
important, since it gives an indication of when a merger may be exhausted; we will thus 
maintain the invariant that as we start filling, buffers that are empty, are the output of 
exhausted mergers, and should thus be ignored. This is not true, however, in the initial 
funnel, but that can be fixed by introducing a special warm-up phase. This phase is the 
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part of the merging that takes place before the first call to lazy_fill starts outputting 
elements. It consists essentially of head-recursive calls to lazy_fill, as Algorithm 4-3 
illustrates. 

Algorithm 4-3. warmup(Node v) 

if v not leaf then 
 warmup(left child of v) 
 warmup(right child of v) 
fi 
fill(v) 

If, in case all input streams are empty, the invocation of fill simply does nothing and 
returns, the invariant holds; warmup guarantees that fill is called on nodes, only after fill 
has been called on all the children. Leaf nodes are exhausted if and only if no elements 
are in the input. If so, fill will do nothing and return, thus leaving an empty input buffer 
for the parent. This in turn will be taken to mean that the leaf is exhausted. Inductively, 
if all children of an internal merger have returned with empty buffers, they are all 
exhausted, and since no elements are in the buffers, the internal merger is exhausted. 
The same argument applies in the second phase, when elements are actually output 
from the root of the funnel. Note that the scheduling of nodes are the same as in the 
lazy funnel, thus this is a mere algorithmic simplification and not an operational one. 
The modified version of lazy_fill is illustrated in Algorithm 4-4. Note, also, the potential 
performance gained through the stronger invariant. While Algorithm 4-2 evaluates four 
conditional branches per element merged, Algorithm 4-4 only evaluates three. In 
addition, it explicitly needs to check the exhaustion flag. 

Algorithm 4-4. fill(Node v) 

if both inputs are non-empty then 
 while v’s output buffer is not full do 
  if head of left input < head of right input then 
   move head of left input to output 
   if left input buffer empty then 
    fill(left child of v) 
  else 
   move head of right input to output 
   if right input buffer empty then 
    fill(right child of v) 
  fi 
 od 
else if exactly one input buffer empty then 
 move as many elements as possible from the other input to the output 
 if input buffer got empty then 
  fill(corresponding child of v) 
else 
 return 
fi 

Generalization of base nodes from binary to multiway is now also straightforward; 
the invariant holds as long as fill simply returns, if no stream contain elements and it 
only considers non-empty streams for merging. Using z-way base mergers corresponds 
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to stopping the van Emde Boas recursion before we reach trees of height one; stopping 
at e.g. height two would yield a funnel with four-way base mergers. In the analysis that 
follows, we will consider the use of z-way base mergers, as well as a slightly larger 
class of buffer size functions, namely αkd with α and d being constants and k the order of 
the funnel below the buffer. 

4.1.2 Funnel Analysis 
In this section, we analyze the complexity in the cache-oblivious model of filling the 
output buffer of a funnel, using a two-phase funnel. First, the total size of the funnel 
needs to be bounded; this is important for determining when a funnel fits in cache. For 
this, we follow the van Emde Boas recursion. Recall that the van Emde Boas recursion 
is actually a horizontal split of the tree at depth half the height h, the order of a funnel 
being zh, so the size of the output becomes αzhd. 

Lemma 4-1. Assuming d ≥ 2 and k = zh for some h > 0, a k-funnel spans at most 
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Proof. First, consider the number of blocks needed to hold the buffers. A buffer is an 
array of β(h) = αzhd elements and occupies as such no more than β(h)/B+2 blocks, the 
extra two being in the case of the ends reaching into parts of other blocks. For now, we 
assume that buffers take up β(h)/B blocks, and will compensate later. A funnel of height 
h has by convention of this thesis a top tree of height h/21. Aside from the buffers in the 
top and bottom funnels, such a funnel has at most N(h/2) = zh/2 buffers. Each of these 
has a capacity determined by the bottom funnel, namely β(h/2) ≤ β((h+1)/2), since the 
bottom funnel has height h/2. Correspondingly, there are at most N((3h+1)/4) buffers in 
the bottom funnel and N(h/4) in the top funnel. The recursion continues in this way, 
down to funnels of height one, so the total number of blocks used by buffers of a funnel 
of height h is 
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Using the bound 
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we get the bound of the inner sum 
                                                 
1 [BDFC00] uses the convention that search trees of height h have bottom trees of height h/2. 
However, this rounding could lead to very large buffers just below the root, when the tree has height 
2j+1 for some integer j. 
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and the outer sum becomes 
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With d,z ≥ 2, the following bound has been estimated numerically: 

1
4 log 1.00033
dh

z h
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The term is actually bounded by a finite constant, for all d > 1. Realistically, as the d 
approaches 1, the term becomes bounded by logh, which for α ≥ 1, z ≥ 2 and the size of 
the output αzhd < 264, is bounded by 6. 

Each buffer may extend onto two additional blocks and each node may span at most 
two blocks (assuming a block is big enough to hold at least one). Since there are no 
more than zh buffers or nodes, nodes and buffer-ends can contribute with no more than 
4zh blocks, which completes the proof.  

Note, that for constant α and z, S(k) is O(k(d+1)/2/B+4k). The fact, that there is no need 
to layout the funnel in contiguous memory locations not only makes life easer on the 
implementer, it also provides for greater flexibility which is important when using the 
funnel in dynamic data structures, such as the funnel heap [BF02b]. 

Now we are ready to prove the I/O bound of fill. 
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Theorem 4-1. Assuming M ≥ (cB)(d+1)/(d-1), for some c > 0, and the input streams 
contain a total of αkd elements a k-funnel performs O(kdlogM(kd)/B +k) 
memory transfers during an invocation of fill on the root, for fixed α 
and z. 

Proof. For this proof, we also conceptually follow the van Emde Boas recursion, but 
this time only until we reach a subfunnel of order j, such that γj(d+1)/2 ≤ εM, with ε being 
the solution to 

 ( )
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For finite c > 0 and d > 1 we have 0 < ε < 1. Figure 4-2 shows the recursion in case 
the k-funnel is too big to fit in cache. 

 
Figure 4-2. A k-funnel at the level of detail, where it consists of j-funnels. 

The shaded box indicates the relative size of memory. 

A j-funnel has two important properties. First, the blocks spanned by a j-funnel, as 
well as a block from each of its input streams, all fit in cache. Second, if the entire k-
funnel does not fit in cache, a j-funnel outputs at least a (positive) factor of B more 
elements, than there are input streams. The first property states that S(j)+j ≤ M/B, 
which is proved using definition of j 
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and Lemma 4-1: 

j2-funnel 

j-funnel ...

Memory: 
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The second property states that αjd > ajB, for some a. Essentially, this is a guarantee 
that the funnel will be able to pay the price of touching the input streams with the 
elements output. By definition of j, the subfunnel on the previous recursion level could 
not fit in cache. That funnel is of order at most zj2 (the factor z being in case the j-funnel 
is the top funnel of a funnel of odd height) so we have 
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Consider now an invocation of fill on the root of a j-funnel. Assuming enough 
elements in the input, this invocation will output at least αjd elements. First, however, 
we must load the j-funnel and a block from each stream. This will cost at most 
γj(d+1)/2/B+5j memory transfers. Now the funnel can stay in cache and output the αjd 
elements in a streaming fashion. When a block from an input stream has been used, the 
optimal replacement will read the next part of the stream read into that block; hence, 
the input will also be read in a streaming fashion. By the second property, the number 
of memory transfers per element output becomes at most 
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While there are a total of αkd elements in the input of the k-funnel, and it therefore 
will not run empty during the merge, the input of all but the bottom-most j-funnels may 
run empty while it is in cache and actively merging. This may evict the funnel from 
memory, cause the j-funnel below the empty buffer to be loaded, and in turn reload the 
first funnel. However, at least αjd elements have been merged into the buffer, and by the 
argument above, each of these elements may be charged the (5γ/(αc)z(d+1)/2ε(d-

1)/(d+1)+α/γ+2)B-1 memory transfers to pay what it costs to reload the funnel. 
In total each element is charged 2(5γ/(αc)z(d-1)/2ε(d-1)/(d+1)+α/γ+2)B-1 memory transfers, 

per j-funnel it passes through. There are no more than 1+logjk j-funnels on the path from 
the input of the k-funnel to the root and since γz(d+1)/2jd+1 > εM implies j > (Mε/γ)1/(d+1)/z½, 
that number is bounded by 
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The total number of memory transfers caused by all elements going all the way 
through the k-funnel is then bounded by 
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When finally a j-funnel becomes exhausted, it may not have output αjd elements and 
the elements them selves will not be able to pay for the memory transfers. However, the 
j-funnel is permanently marked exhausted and will thus not be invoked again. So we 
will only come up short once per j-funnel, and can thus charge the missing payment to 
the output buffer it self. Charging each position in the buffer (5γ/(αc)z(d-1)/2ε(d-

1)/(d+1)+α/γ+2)B-1 memory transfers, will account for might be missing, when the funnel 
below it became exhausted. However, since there are at most γk(d+1)/2 buffer positions in 
total, this is a low-order term.  
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As for the work complexity of merging elements with a funnel, the following 
theorem holds: 

Theorem 4-2. A k-funnel performs O(αkdzlogzk) operations during an invocation of fill 
on the root.  

Proof. During a fill on a given node, elements are moved from one level in the merger 
to a higher level. At each step in fill, the smallest element among the heads of the z 
buffers must be found and moved to the output. This costs at most z-1 comparisons and 
one move and the result is that the element is at a higher level. The merger has height 
O(logzk), so the total number of moves and comparisons are O(zlogzk) per element 
merged. Using binary heaps to merge the z inputs of a node, we get the optimal bound 
of O(logk). 

Since we move from level to level and visits each node several times during an 
invocation of fill on the root of a k-funnel, we should also consider the number of tree 
operations, that is, the number of times we move from one node to another. For that, we 
see that moving from a node to its parent implies having filled the buffer on the edge 
connecting them or that the node is the root of a merger has become exhausted. In the 
first case, moving from a node to its parent, crossing the middle of a k′-funnel, implies 
having merged ( )( ) ( )2d

k kΩ β Ω α′ ′=  elements. We need to move a total of αkd 
element past the middle, so we cross it O((αkd)/(αk′d/2)) = O(kd/k′d/2) times. The total 
number of times we go from a node to its parent is thus bounded by the recurrence 
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which is dominated by the base case. There are at most O(½logzk) levels with k′ ≤ z and 
since we begin and end at the root, we go from parent to child as many times as we go 
from child to parent and so the total number of tree operations is bounded by 
O((k/z)dlogzk). If the node is the root of an exhausted merger, we may bring no elements 
to the parent. However, this can only happen once per node for a total of k times.  

4.1.1 The Sorting Algorithm 
Now that we are able to merge multiple sorted streams cache-obliviously and 
efficiently, we can use that in a mergesort algorithm. The question is now, what order 
funnel should be used for the merging? We may simply use k = N, in which case the 
sorting algorithm is the merging. However doing so we are only feeding the merger one 
element per stream, and that would violate the requirement that a total of at least αkd 
elements is in the input, since d is a constant greater than one. Furthermore, the merger 
would take up a super-linear amount of space. The next obvious choice would then be k 
= (N/α)1/d corresponding to the funnel outputting exactly N elements, in which case 
there are enough elements in the input to satisfy the funnel requirements and the funnel 
will require sub-linear space as well. The algorithm proceeds as outlined in Algorithm 
4-5.  
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Algorithm 4-5. funnelsort(Array A) 

if |A| ≤ αzd then 
 sort A “manually” 
else 
 split A into roughly equal-sized arrays Si, 0 ≤ i < (|A|/α)1/d 
 for 0 ≤ i < (|A|/α)1/d 
  funnelsort(Si) 
 construct a (|A|/α)1/d-funnel F 
 attach each Si to F 
 warmup(F.root) 
 fill(F.root) 
fi 

It is understood that both funnelsort and fill require some way of providing the output. 
This could be in the form of a pointer to where the first (smallest) element should be 
placed. The output of fill will be the same as the output of funnelsort, but discussions on 
exactly where the output of funnelsort will go, is deferred to the next chapter. 

The base case threshold is set to αzd, simply because it needs to be set somewhere. 
This is a nice place, since it guaranties, that k > z, when a k-funnel is used, which may 
eliminate the need to handle some special cases in the funnel. Exactly how the manual 
sorting is done, whether with quicksort or bubblesort or something third, is 
asymptotically insignificant, since it done on a constant-sized array. 

Theorem 4-3. Assuming M(d-1)/(d+1) ≥ cB, for some c > 0, Algorithm 4-5 performs 
O(NlogN) operations and incurs O(dN/BlogM(N)) memory transfers to 
sort an array of size N, for fixed α and z. 

Proof. The base case is when all elements fit in cache twice, once for the input and once 
for the output, along with the funnel needed to merge. In that case, funnelsort incur at 
most the memory transfers needed to fetch the input into cache. If the input, output and 
funnel does not fit cache, the second property of the funnel, states that αkd is Ω(kB). 
Further more, with k = (n/α)1/d, Theorem 4-1 states that merging n elements incur 
O(logM(n)/B) memory transfers per element. This gives us the following recurrence for 
the number of memory transfers incurred by Algorithm 4-5: 

 ( )

( ) ( )
( )

1

1
11

, 2

log ,

d

d
d dd

M

n nn S MB
T n

n nT n n otherwiseB

α

αα
−

   + ≤    =        +         

O

O
 (4.14) 

The recurrence expands to the sum 
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For the work bound, we know from Theorem 4-2, that the work done in the funnel is 
bounded by the number of moves. Since funnelsort, when unrolled, is essentially one 
big funnel, all elements are merged through O(zlogzN) base mergers for a total of 
O(NlogN) comparisons and moves, for fixed z.  

Using (3.10) and Theorem 4-2, we conclude that funnelsort is an optimal cache-
oblivious sorting algorithm. 

As with multiway mergesort, we can see that as long as α1/dNd-1/d < M, only the top 
level of recursion goes outside the cache, incurring at most 4N/B+4 memory transfers, 
including those that write back blocks. With M half a gigabyte, α = 1, and d = 2, this 
will be the case for all inputs taking up less than 258 bytes, thus we do not expect 
funnelsort to perform any different from multiway mergesort on this particular level of 
the memory hierarchy. 

4.2 LOWSCOSA 
When it comes to the practical application of algorithms minded for massive data sets, 
it is not only the asymptotic I/O complexity, but also the amount of memory actually 
needed to perform the task, that is of importance. The space required by the algorithm, 
can be divided into the space required to store the actual input and workspace. Clearly, 
a sorting algorithm needs linear space to store the input, and indeed most external 
memory algorithms require O(N) space in total. Many, however, also require linear 
workspace. 

Multiway mergesort, unfortunately, is one such an algorithm. While it has good, 
indeed asymptotically optimal I/O performance, it requires space the size of the array 
being sorted to store the element in sorted order. These elements are mere duplicates of 
the elements in the input, so keeping the input around seems wasteful, yet it is 
necessary for the algorithm to work. Being able to work with data, using very little 
extra space would be a benefit; compared to otherwise equal sorting algorithms, 
mergesort might incur up to twice the memory transfers of an in-place variant, when    
M < N, simply because we need not incur memory transfers writing the output to 
previously untouched memory. When M/2 < N ≤ M, it is even worse; sorting using an 
algorithm like funnelsort would incur N-M/2 memory transfers to write the output, not 
counting the ones needed to bring the elements into cache, while in-place algorithm 
would incur no memory transfers at all. In this section, we present a novel extension to 
k-mergers that enable them to be used in a sorting algorithm that does not require linear 
working space, in a way that does not affect its overall I/O complexity. 
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4.2.1 Refilling 
The idea for a cache-oblivious sub-linear workspace merge-based sorting algorithm is 
quite simple; the merger is extended with a refilling feature. The motive is to recycle 
the space occupied by elements that have already been or are in the process of being 
merged, while maintain temporal and special locality. 

The technique can be applied to heap-based mergers as well as funnels. It consists of 
requiring the merger to invoke a predefined function when elements have been read in 
from the input. The function is given an indication of from what section of what input 
stream they were read. Furthermore, the merger must invoke it before the elements read 
in is written to the output. The function knows that the elements from that part of the 
input now is in the hands of the merger, and will eventually be output, so it is free to 
reuse the space they take up. A key to making this work is that the merger is obligated 
to invoke this function after having read in no more than a constant number of 
elements. This way, the I/O complexity of the merger is unaffected; that section of the 
input is in cache because it has recently been read by the merger. In case of the funnel, 
one would invoke the refiller after having called fill on a leaf. At this point, at most αzd 
elements have been read in from a given stream, so, assuming 2αzd+1 < M, that part of 
the stream is still in cache, and it can be recycled for free, or at least the price of 
fetching the elements used. The refilling functionality may in general be useful many 
scenarios, where space is sparse. 

4.2.2 Sorting 
The basic steps for the low-order working space cache-oblivious sorting algorithm 
(LOWSCOSA) is first to provide for a “working area” inside the input array. When that 
is done, the merger will then sort recursively and then merge using the working area. 
What we will do is partition the array into two equal sized parts, the first containing 
elements larger than all elements in the second, then recursively sort the second part. 
The first part then becomes the output of the merging of the second, but with the 
merger refilling what it reads in with elements from the first part. The process is 
illustrated in Figure 4-3. The refiller maintains a pointer to elements in the first part of 
the array, initially pointing to the first, going forward from there. When invoked, with a 
section of size n, it copies n elements beginning from the pointer to that section. 
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Figure 4-3. The process of multiway merging with low-order working 

space. Horizontal sections indicate unordered elements. First 
step partitions the array into large (diagonal-down patterned) 
and small (diagonal-up patterned) elements. Arrowheads 
indicate flow direction of elements; the arrow going into the 
side of the merger is the refiller. The gap between the output 
and the refiller shows that elements are read in through the 
refiller before elements are output from the merger. 

Since the refiller is invoked before elements are output, the refiller pointer will 
always stays ahead of where the output is written, and within the first part of the array. 
The algorithm has now sorted the first half of the array. It then recurses on the second 
half, as is illustrated in Algorithm 4-6, where a funnel is used as merger. The merger 
and the parameters can be changed to that of a cache-aware mergesort. 
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Algorithm 4-6. LOWSCOSA(Array A) 

if 2|A| ≤ αzd then 
 sort A “manually” 
else 
 partition A into a half of large elemens Al and a half of small As 
 split Al into roughly equal-sized arrays Si, 0 ≤ i < (N/(2α))1/d 
 for 0 ≤ i < (|A|/(2α))1/d 
  funnelsort(Si) 
 construct a (|A|/(2α))1/d-funnel F 
 attach each Si to F 
 set pointer in F.refiller to Al 
 warmup(F.root) // As now contain large elements 
 LOWSCOSA(As) 
fi 

We will discuss the practicality of the partitioning in Section 5.5.2. For now, in the 
analysis, we use of the following lemma: 

Lemma 4-2. Finding the median of an array incurs O(1+N/B) memory transfers, 
provided M ≥ 3B. 

Proof. The proof can be found in [Dem02]. Since the algorithm relies on constant time 
operations and scanning, the result is rather intuitive.  

With the median at hand, we can make a perfect partitioning efficiently, thus 
avoiding any complications and give a worst-case bound. 

Theorem 4-4. Assuming M(d-1)/(d+1) ≥ cB, for some c > 0, and M > 2αzd+1, Algorithm 
4-6 performs O(NlogN) operations and incurs O(dN/BlogM(N)) memory 
transfers to sort an array of size N. 

Proof. Elements now pass through the merger in two ways; either through the refiller or 
through input streams being merged. After the partitioning the large elements pass 
through the refiller, incurring O(B-1) memory transfers each. The small elements gets 
sorted recursively incurring O(dlogM((N/α)1/d/2)/B) = O(dlogM(N)/B) memory transfers 
each, pass through the merger, incurring O(logM(N)/B), but is not present at the next 
level of recursion. The base case is when all elements and the merger used to merge the 
recursively sorted streams fits in cache. From then on, no memory transfers are 
incurred. Using Theorem 4-1, Theorem 4-3, and Lemma 4-2, we get the recurrence 
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which expands to 
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The work bound is given by a similar recurrence: 
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So the LOWSCOSA is also optimal in the cache-oblivious model, but what is unique 

to it is that the following theorem holds: 

Theorem 4-5. Algorithm 4-6 requires no more than O(N(d+1)/(2d)+N(d-1)/d) working 
space. 

Proof. Working space is required to store the funnel and the output of the sort of . Since 
the algorithm is tail-recursive, it requires no stack to store the state of the recursive 
calls. At each level, we use funnelsort to sort subarrays of size O(N(d-1)/d). We allocate 
space to store the output of one call to funnelsort; when the sort is completed, the 
elements can be copied back and the allocated space reused in the next call to 
funnelsort. When we are done sorting using funnelsort, the space is freed and space 
allocated for the funnel. From the proof of Lemma 4-1, we have that, a k-funnel takes 
up O(k(d+1)/2) space. With k = O(N1/d) that becomes O(N(d+1)/(2d)). For 1 < d ≤ 3, the space 
required for the funnel dominates while for d > 3, space requirements are bounded by 
output of the funnelsort. Both terms are bounded by O(N(d+1)/(2d)+N(d-1)/d), which is o(N) 
for all d > 1. Before continuing recursively on the second half, all workspace is freed. 
This way the total working space consumption is maximal at the top-level of the 
recursion.  


